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Field-induced dissociation of two-dimensional excitons in transition metal dichalcogenides
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and Center for Nanostructured Graphene (CNG), DK-9220 Aalborg Øst, Denmark
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Generation of photocurrents in semiconducting materials requires dissociation of excitons into free charge
carriers. While thermal agitation is sufficient to induce dissociation in most bulk materials, an additional
push is required to induce efficient dissociation of the strongly bound excitons in monolayer transition metal
dichalcogenides (TMDs). Recently, static in-plane electric fields have proven to be a promising candidate. In the
present paper, we introduce a numerical procedure, based on exterior complex scaling, capable of computing
field-induced exciton dissociation rates for a wider range of field strengths than previously reported in the
literature. We present both Stark shifts and dissociation rates for excitons in various TMDs calculated within
the Mott-Wannier model. Here, we find that the field-induced dissociation rate is strongly dependent on the
dielectric screening environment. Furthermore, applying weak-field asymptotic theory to the Keldysh potential,
we are able to derive an analytical expression for exciton dissociation rates in the weak-field region.

DOI: 10.1103/PhysRevB.100.045307

I. INTRODUCTION

Interest in two-dimensional transition-metal dichalco-
genide (TMD) semiconductors has increased substantially in
recent years due to their exceptional electronic and optical
properties. They have a wide range of applications, including
photodetectors [1–3], light-emitting diodes [4], solar cells
[5,6], and energy storage devices [7–9], to name a few. One
of the most important implications of the reduced screening
in two-dimensional TMDs is the comparatively large exciton
binding energy [10–13]. Such excitons may significantly re-
duce the efficiency of solar cells and photodetectors, as these
devices require the dissociation of excitons into free charge
carriers to generate an electrical current. Excitons in bulk
semiconductors will usually dissociate by thermal agitation
alone due to their low binding energies. This is not the case
for their two-dimensional counterparts, however, and it is
therefore of great interest to obtain efficient methods of in-
ducing exciton dissociation in TMD monolayers. Dissociation
induced by in-plane static electric fields has gained attention
lately. For instance, dissociation rates for two-dimensional
excitons in MoS2 were theoretically investigated in Refs. [14]
and [15], and for various bulk TMDs in [13].

Recently, the first systematic experimental study of field-
induced dissociation of two-dimensional excitons in mono-
layer WSe2 encapsulated by hBN was carried out [16]. It
was found that the limiting factor in generating photocurrents
when a weak in-plane field was present was the dissociation
rate of electron-hole pairs. That work also showed that the
photocurrent generated in fields weaker than 15 V/μm was
accurately predicted by the Mott-Wannier model [17,18].
Nevertheless, these weak-field dissociation rates proved trou-
blesome to obtain numerically [16], and they were there-
fore extrapolated by fitting to the rate of a two-dimensional
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hydrogen atom [19]. In the present paper, we introduce a
numerical method capable of computing exciton dissociation
rates for significantly weaker fields with no compromise on
the accuracy for stronger fields. It is based on the complex
scaling approach [20,21] that was used in Refs. [14] and
[16], but, rather than rotating the entire spatial region into the
complex plane, we rotate the radial coordinate only in an ex-
terior region r > R. For sufficiently weak fields, we show that
the rates can be obtained analytically based on the recently
developed weak-field asymptotic theory (WFAT) [22], which
greatly simplifies their calculation. Furthermore, we show that
the weak-field ionization rate of two-dimensional hydrogen is
a special case of a more general formula for dissociation of a
two-dimensional two-particle system.

II. TMD EXCITON IN ELECTROSTATIC FIELD

Throughout the present paper, excitons will be modeled as
electron-hole pairs described by the two-dimensional Wannier
equation [17,18], which reads (atomic units are used through-
out) [

− 1

2μ
∇2 − w(κr)

]
ψ (r) = Eψ (r), (1)

where μ is the reduced exciton mass, r = re − rh is the
relative in-plane coordinate of the electron-hole pair, κ =
(κa + κb)/2 is the average dielectric constant of the materials
above and beneath the TMD sheet, and w is a screened
Coulomb attraction. It is well known that screening in two-
dimensional semiconductors, such as TMDs, is inherently
nonlocal [23,24], i.e., momentum-dependent, and can be ap-
proximated by the linearized form ε(q) = κ + r0q, where q is
the wave vector, and the so-called screening length r0 can be
related to the polarizability of the sheet [23]. The interaction
w may then be obtained as the inverse Fourier transform of
2π [ε(q)q]−1, where 2π/q is the 2D Fourier transform of 1/r.
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The resulting interaction is given by the Keldysh [24,25] form

w(r) = π

2r0

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
, (2)

where H0 is the zeroth-order Struve function and Y0 is the
zeroth-order Bessel function of the second kind [26].

When an in-plane electrostatic field is applied to the exci-
ton, Eq. (1) is modified to include a perturbation term[

− 1

2μ
∇2 − w(κr) + ε · r

]
ψ (r) = Eψ (r). (3)

In the present paper, we will restrict ourselves to electric fields
pointing along the x-axis, i.e., ε = εex. As is evident, the
form of Eq. (3) is the same as that of the two-dimensional
hydrogen atom in a static electric field [19], albeit with a
different potential. It should therefore come as no surprise
that excitons perturbed by an electrostatic field will eventu-
ally dissociate. An important distinction, however, is that the
excitons will recombine if they are not dissociated [16,27].
This field-free recombination rate is in competition with the
field-induced dissociation. For practical applications, recom-
bination [28–30] and other forms of exciton decay (such as
defect-assisted recombination [31] and exciton-exciton anni-
hilation [32]), which do not yield free charge carriers, are
often undesired.

The field-induced dissociation rate � is connected to the
nonvanishing imaginary part of the energy eigenvalue in the
presence of an electric field by the relation � = −2 ImE
[13,14,16,19]. The desired eigenvalues are therefore unob-
tainable through conventional Hermitian methods. Rather,
one should solve Eq. (3) subject to regularity and outgoing
boundary conditions [22,33]. This is a nontrivial task in all
but the simplest cases, and in practice one usually computes
the resonance energies by complex scaling of the Hamiltonian
[20,21].

III. EXCITON DISSOCIATION

In its simplest form, complex scaling corresponds to ro-
tating the radial coordinate into the complex plane uniformly
[20,21], r → exp(iφ)r, where φ is a fixed real-valued an-
gle (note that if φ is chosen complex, the coordinate will
simply be stretched as well as rotated). This transformation,
referred to as uniform complex scaling (UCS), turns the
outgoing waves mentioned above into exponentially decaying
waves, provided that φ is chosen large enough [34]. Thus,
the complex scaled resonance wave functions are square
integrable, and the resonance energies can be obtained by
solving Eq. (3) with the scaled operator and the boundary
condition ψ (r → ∞) = 0. This approach has been used to
obtain the dissociation rates of two-dimensional TMD exci-
tons in Refs. [14,16]. Nevertheless, as was discussed briefly
in Ref. [16], numerical difficulties arise when the electric
field becomes sufficiently weak. This is because the important
region for weak fields is sufficiently far from the origin that
the uniformly complex scaled resonance wave function has
(numerically) vanished prior to reaching this region. By uti-
lizing the so-called exterior complex scaling (ECS) approach

FIG. 1. Sketch of the two-dimensional exciton in the xy-plane
with the radial coordinate rotated into the complex plane by an angle
of φ for r > R.

[34–37], combined with a finite-element (FE) representation
of the wave function, we are able to compute dissociation rates
for significantly weaker fields, as we now demonstrate.

As the name suggests, ECS transforms the radial coordi-
nate outside a scaling radius R,

r →
{

r for r < R,

R + (r − R)eiφ for r > R,
(4)

where φ is the angle of rotation, as illustrated in Fig. 1. The
partitioning of the radial coordinate is efficiently dealt with by
an FE basis representation, the details of which can be found
in Appendix A. Fig. 2 shows the Stark shift and dissociation
rate of the ground-state exciton as functions of in-plane field
strength for four important materials in various dielectric
environments. The screening lengths and reduced masses used
in the calculations are obtained from Ref. [38]. As is evident,
the dissociation rate increases rapidly with increasing field
strength. The rates can also be seen to be strongly dependent
on the screening environment, which is to be expected as
increased screening leads to reduced binding energies. It is
therefore possible to tune the dissociation rates of the TMDs
as desired within a certain range. For example, encapsulating
the TMDs in hBN (with κ = 4.9 [11]) increases the disso-
ciation rates by several orders of magnitude compared to
their free-space counterparts. Rates for MoS2, MoS2/hBN,
and hBN/MoS2/hBN were presented in Ref. [14] for fields
stronger than 50 V/μm. However, the experimental study of
hBN/WSe2/hBN in Ref. [16] suggests that exciton dissocia-
tion rates are the limiting factor in generation of photocurrents
for applied fields weaker than 15 V/μm in this material. For
stronger fields, the photocurrent measurements deviate from
the field-induced rates predicted by the Wannier model, and
other limitations dominate [16]. We expect to see the same
effect for the other TMDs, and we furthermore expect this
threshold field to increase as the screening is reduced.

In weak fields, the Stark shifts in Fig. 2 can be seen to
vary approximately as ε2, in agreement with the lowest-order
perturbation theory expansion of the energy E ≈ E0 − 1

2αε2,
where E0 is the unperturbed ground-state energy and α is the
exciton polarizability. The shape of the shift is in agreement
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FIG. 2. Exciton Stark shift and dissociation rate of the ground-
state exciton for four important materials in various dielectric
environments.

with those observed for similar systems; the energy initially
decreases rapidly with field strength and then levels off as the
field strength increases [19]. A more detailed analysis of the
shift in the weak-field region will be made in Sec. V.

The resonance discussed above corresponds to dissociation
of an exciton in its ground state. Meanwhile, excitation by
high-energy photons may produce higher excitons. It is there-
fore interesting to analyze the dissociation rates of excited
states. The numerical procedure outlined in Appendix A is
perfectly capable of handling excited states, and in Fig. 3 we
show Stark shifts and dissociation rates for excitons occupy-
ing either the 1s, 2s, or 2p state in four different TMDs located
in free space (κ = 1). As expected, the dissociation rates for
the excited states are much larger than those of the ground
state, and for weak electric fields in particular. This, along
with the fast decay of excited states to the ground state, means
that the limiting factor in generation of photocurrents in weak
in-plane electric fields is dominated by the dissociation rate of
ground-state excitons. This explains the excellent agreement
between photocurrent measurements and calculated ground-
state dissociation in Ref. [16] for weak electric fields. We
also observe a substantially larger Stark shift in the 2s and
2p states, in agreement with expectations.

FIG. 3. Stark shift and dissociation rates for excitons occupying
either the 1s, 2s, or 2p state in TMDs located in free space (κ = 1).

IV. WEAK-FIELD ASYMPTOTIC THEORY

Even with the improved numerical procedure, the dissoci-
ation rates for extremely weak fields are unobtainable. In fact,
any numerical procedure with finite-precision arithmetic fails
for sufficiently weak fields, when the ratio �/|E0| approaches
the round-off error [39,40]. Fortunately, with the recent devel-
opment of weak-field asymptotic theory (WFAT) [22], we are
able to take advantage of the simple asymptotic form of the
Keldysh potential and calculate the weak-field dissociation
rates analytically. To this end, we first simplify Eq. (3) by
introducing the scaling relations

r̃0 = μ

κ2
r0, r̃ = μ

κ
r, and ε̃ = κ3

μ2
ε, (5)

which lead to

E (μ, κ, r0, ε) = μ

κ2
E (1, 1, r̃0, ε̃). (6)

Thus, the only nontrivial parameters are r̃0 and ε̃, and the
analysis in the following will therefore be restricted to the
simplified problem[− 1

2∇2 − w(r) + ε · r
]
ψ (r) = Eψ (r), (7)
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from which Stark shifts and dissociation rates can be obtained
using Eq. (6). Note that in order to simplify the notation, the
tilde has been omitted in Eq. (7) as well as in the following.
Therefore, unless explicitly stated otherwise, r, r0, ε, and E
in the following refer to the scaled parameters. As discussed
in the previous section, the limiting factor in generating pho-
tocurrents is the dissociation rate of the ground-state exciton.
For this reason, we restrict our analysis in the following to the
ground state.

The potential in Eq. (7) has the large-r behavior [26]

w(r) = 1

r
+ O

(
r2

0

r3

)
, (8)

which has the form required to use WFAT. A leading-order
expression for the weak-field dissociation rate was derived
for a three-dimensional system in Ref. [22] and extended
to first order in ε in Ref. [39]. We shall only consider the
leading-order approximation here. By modifying the approach
in Ref. [22] to two dimensions, we find that the weak-field
dissociation rate for the ground state of Eq. (7) is given by

� ≈ |g0|2W0(ε), (9)

with the asymptotic coefficient and field factor [41,42] given
by

g0 = lim
v→∞ v1/2−1/kekv/2

∫ ∞

0
ϕ0(u)ψ0

(
u + v

2

)
1√
u

du (10)

and

W0(ε) = k

(
4k2

ε

)2/k−1/2

exp

(
−2k3

3ε

)
, (11)

respectively. Here, k = √−2E0, and u and v are the parabolic
cylindrical coordinates defined by

u = r + x, u ∈ [0,∞), (12)

v = r − x, v ∈ [0,∞). (13)

The functions appearing in Eq. (10) are the unperturbed
ground state ψ0 and

ϕn(u) =
[ √

kn!

(n − 1/2)!

]1/2

L(−1/2)
n (ku)e−ku/2, (14)

with L(α)
n (x) a generalized Laguerre polynomial [26]. To

obtain the weak-field dissociation rate from Eq. (9), one
therefore needs the unperturbed binding energy E0 and the
asymptotic coefficient g0 of the simplified problem. Once they
have been obtained, the physical weak-field dissociation rate
for arbitrary monolayer TMDs can be obtained by scaling
back to the original units, cf. Eq. (6),

�(μ, κ, r0, ε) = μ

κ2
�(1, 1, r̃0, ε̃). (15)

We now turn to computing the asymptotic coefficient g0.

Computing the asymptotic coefficient

Finding g0 given by Eq. (10) requires an accurate represen-
tation of the wave function for large v. Note that a traditional

basis expansion (e.g., a Gaussian basis) is generally not ac-
curate enough, as only the most slowly decaying functions
will contribute in this region. This problem was partially
circumvented in Ref. [42] by using a Gaussian basis with
optimized exponents. Here, we will implement Numerov’s
finite-difference scheme, which can accurately and efficiently
construct the unperturbed wave function in the asymptotic
region. The technical details can be found in Appendix B.
As a preliminary, it is convenient to relate g0 to the radial
wave function. The ground state of a potential with cylindrical
symmetry satisfies

ψ0(r) ∼ C0r1/k−1/2e−kr for r → ∞, (16)

where C0 is a constant. Using Eq. (16) in Eq. (10) leads to the
relation

g0 = 21/2−1/kπ1/4C0

k1/4
. (17)

The problem of finding g0 has therefore been reduced to ob-
taining the asymptotic coefficient of the radial wave function.
It can be found by taking the limit

C0 = lim
r→∞ ψ0r1/2−1/kekr . (18)

Note that in the unscreened limit (r0 → 0), k = 2 and ψ0 =
23/2π−1/2 exp[−(u + v)] [43], which leads to g0 = 25/4π−1/4,
and Eq. (9) is therefore in agreement with the expression
found in Ref. [19] for the two-dimensional hydrogen atom.
In practice, we find C0 by fitting Eq. (18) to the asymptotic
expansion

D(r) =
4∑

n=0

dn

rn
, (19)

in a stable region (see Appendix B), as described in Ref. [42].
The asymptotic coefficient C0 is then obtained by taking
the limit limr→∞ D = d0. The computational method above
takes advantage of the fact that a high-order finite-difference
scheme is able to accurately reproduce the wave function
for large r. Recently, however, integral representations for
the asymptotic coefficient that are insensitive to the wave
function tail have been derived for a three-dimensional system
[44,45]. This suggests that one may get away with using a
sufficiently accurate representation of the wave function only
in an interior region. We shall use the integral equations as a
check to ensure the accuracy of the scheme presented above.
To derive the corresponding equation for our two-dimensional
system, we introduce the reference function � as a solution to[

−1

2
∇2 − 1

r
+ k2

2

]
�n(r) = 0. (20)

The relevant function for the asymptotic coefficient of the
ground state is

�0(r) = −2
1
k + 1

2 k
1
k − 1

2 �

(
1

2
− 1

k

)
e−krM

(
1

2
− 1

k
; 1; 2kr

)
,

(21)

where M is a confluent hypergeometric function [26]. If the
exciton energy coincides with one of the energies of the
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TABLE I. Binding energy E0(1, 1, r̃0) and asymptotic coefficient g0 of the simplified problem for four important materials in different
dielectric environments.

MoS2 MoSe2 WS2 WSe2

κ E0 g0 E0 g0 E0 g0 E0 g0

1 0.0714 0.00098 0.0659 0.00057 0.0921 0.0044 0.0801 0.0020
2 0.1907 0.0889 0.1773 0.0707 0.2392 0.1671 0.2113 0.1200
3 0.3200 0.3210 0.2995 0.2805 0.3928 0.4650 0.3512 0.3829
4 0.4474 0.5695 0.4210 0.5195 0.5392 0.7323 0.4870 0.6420
5 0.5680 0.7796 0.5370 0.729 0.6740 0.9380 0.6142 0.8515

two-dimensional hydrogen atom

E (hydr)
n = 1

2(n − 1/2)2 , (22)

where n = 1, 2, . . . [43], the confluent hypergeometric func-
tion in Eq. (21) reduces to a polynomial of finite degree, and
�0 will vanish as r tends to infinity. In practical calculations,
this is hardly ever the case and the reference function will
therefore be exponentially increasing (see Ref. [46] for a
discussion of the case in which E0 ≈ E (hydr)

n ),

�(r) ∼ −k−1r−1/2−1/kekr for r → ∞. (23)

Integrating by parts and using Eqs. (16) and (23) when r tends
to infinity, we find

C0 =
∫ ∞

0
�0(r)

[
1

2
∇2 + 1

r
− k2

2

]
ψ0(r)r dr, (24)

which, using Eq. (7) with ε = 0, can be reduced to

C0 =
∫ ∞

0
�0(r)

[
1

r
− w(r)

]
ψ0(r)r dr. (25)

The integrand in Eq. (25) is a product of an exponentially
increasing function �0 and an exponentially decreasing
function ψ0. Such an integral need not be convergent.
Nevertheless, as is evident from the large-r behavior of
these functions [see Eqs. (16) and (23)], the exponential
terms cancel for r tending to infinity, resulting in the
integrand tending to zero sufficiently quickly for the integral
to converge. We have checked that Eqs. (18) and (25)
agree when using the numerically exact wave function. The
asymptotic coefficients and binding energies of the simplified
Wannier problem for four important materials are presented
in Table I. Note that these binding energies increase with
κ . This is because the binding energies of the simplified
problem increase when r̃0 decreases and r̃0 is proportional
to κ−2. In Fig. 4, we compare the dissociation rates for
excitons in MoS2 and WSe2 given by the weak-field formula
Eq. (9) to the numerically exact dissociation rates. As can
be seen, the agreement between the weak field and the fully
numerical results is reasonable for fields lower than 50 V/μm
and improves as the field strength decreases. For ε �
κ−1/2 20 V/μm the agreement in Fig. 4 becomes excellent.

V. STARK SHIFT

Applying perturbation theory to the ground state of a
system with cylindrical symmetry leads to the well-known

result

E = E0 − 1
2αε2 + O(ε4), (26)

FIG. 4. Exciton dissociation rates for MoS2 (upper) and WSe2

(lower) encapsulated by various dielectric media. The circles are the
numerically exact results obtained by the method in Appendix A
(same as those in Fig. 2). The solid lines correspond to the weak-field
formula Eq. (9) with the parameters found in Table I.
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TABLE II. Exciton polarizability α for various TMDs in differ-
ent dielectric environments in units of 10−18 eV(m/V)2 calculated
from Eq. (27) with ψ0 and ψ1 expanded in an FE basis with a spacing
of 1 a.u.

MoS2 MoSe2 WS2 WSe2

κ α α α α

1 4.59 6.24 5.04 6.24
2 6.31 8.46 7.30 8.78
3 8.48 11.22 10.25 12.02
4 11.18 14.63 14.09 16.14
5 14.54 18.81 19.00 21.32

where α is the static polarizability. A shortcoming of pertur-
bation theory is that it predicts the energy as a function of
field strength to be purely real, which, as seen in the previous
sections, is obviously not correct for a system in which disso-
ciation is possible. Nevertheless, the nonperturbative behavior
of the resonance energy can be reproduced by utilizing the first
few perturbation coefficients together with the hypergeomet-
ric resummation technique [47]. This approach was used in
Ref. [19] with great success for low-dimensional hydrogen.
In the present section, we wish to analyze to what extent
the change in the real part of the resonance energy, i.e., the
exciton Stark shift, can be predicted by standard second-order
perturbation theory (for previous work on exciton Stark shifts
in TMDs, see Refs. [14,15,48,49]). To this end, we calculate
the exciton polarizability given by

α = −2〈ψ0|r cos θ |ψ1〉, (27)

where the first-order correction ψ1 is a solution to the
Dalgarno-Lewis [50] equation[

− 1

2μ
∇2 − w(κr) − E0

]
ψ1 = −r cos θψ0, (28)

and will therefore be of the form ψ1 = cos θ f (r), where
f is a purely radial function. Expanding ψ0 and ψ1 in a
finite-element basis (without complex scaling), as described
in Appendix A, Eq. (28) can be solved and the polarizability
found (for alternative methods of finding the polarizability,
see Ref. [48]). The exciton polarizability for various TMDs in
different environments can be found in Table II, and Fig. 5
shows a comparison between the shift in the real part of
the complex resonance energy and the perturbation series in
Eq. (26). Evidently, a good agreement is found in the weak-
field region. Furthermore, excitons in environments with large
dielectric screening begin to deviate from their second-order
expansion for weaker fields than their free-space counterparts.
This is to be expected, as the binding energies of excitons with
heavily screened interactions are lower and the characteristic
fields of these excitons are therefore weaker.

VI. SUMMARY

In the present work, electric-field-induced dissociation of
TMD excitons has been investigated using both numerical and
analytical approaches. The dissociation rates as functions of
the in-plane field strength for excitons in monolayer MoS2,

FIG. 5. Exciton Stark shift for four important TMDs in various
dielectric environments. The solid lines correspond to the real part of
the resonance energy, while the dotted lines show the shift predicted
by perturbation theory, E − E0 ≈ −αε2/2.

MoSe2, WS2, and WSe2 in various screening environments
have been obtained. In particular, difficulties associated with
dissociation rates in weak electric fields have been addressed
and resolved. In this regard, an efficient numerical method
capable of computing dissociation rates for a wide range
of fields has been introduced. As the field becomes suffi-
ciently weak, any numerical method with finite precision
arithmetic breaks down, which calls for a different approach.
We demonstrate that an analytical weak-field approximation is
valid in this region, which makes the weak-field dissociation
rates readily available for arbitrarily weak fields. Finally, the
exciton Stark shift has been analyzed and compared to the
results of second-order perturbation theory.
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APPENDIX A: NUMERICAL PROCEDURE

To implement the finite-element (FE) approach, we first
divide the radial grid into N segments [rn−1, rn] for n =
1, . . . , N . Following the procedure in Ref. [51], we introduce
a set of pn linearly independent functions h(n)

i , where i =
1, . . . , pn on each segment. These functions are then trans-
formed into a different set of functions f (n)

i , i = 1, . . . , pn,
that vanish at the segment boundaries, except for the first
and last function, which are required to equal unity at
the lower and upper element boundaries, respectively. To
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summarize,

f (n)
i (rn−1) = f (n)

i (rn) = 0, (A1)

except f (n)
1 (rn−1) = f (n)

pn
(rn) = 1. (A2)

We use Legendre polynomials h(n)
i (r) = Pi−1[yn(r)], where yn

maps [rn−1, rn] onto [−1, 1], and h(n)
i is set equal to zero for

r /∈ [rn−1, rn]. Dirichlet boundary conditions are then imple-
mented for some large rN � R by omitting the last function
f (N )

pN
. The scaling radius R is to be chosen to coincide with an

element boundary. Note that if rN = R, no complex scaling is
implemented. The eigenstate can now be written as a sum of
basis functions,

ψ (r) =
M∑

m=0

N∑
n=1

pn∑
i=1

c(m,n)
i f (n)

i (r) cos(mθ ), (A3)

where the radial part is resolved using the finite-element basis.
Due to the cylindrical symmetry of the unperturbed problem,
the angular dependence of the unperturbed eigenstates is the
cylindrical harmonics eimθ . The angular part of the eigenstate
is therefore resolved efficiently using a basis of cosine func-
tions. To ensure continuity across the segment boundaries, we
enforce

c(m,n−1)
pn−1

= c(m,n)
1 , n = 2, . . . , N. (A4)

To evaluate the radial part of the matrix elements, we use the
Legendre quadrature rule [52].

We proceed by providing a recipe for constructing the over-
lap and Hamilton matrix, and we refer the interested reader to
Refs. [34,51] and references therein for more details on the
mathematical background. It is convenient to first construct
segmentwise matrices containing only the radial part of the
matrix elements. For segments with rn � R the procedure is
familiar, and, as an example, the radial segmentwise overlap
matrices are given by

S(n)
i j =

∫ ∞

0
f (n)
i (r) f (n)

j (r)r dr (A5)

≈
K∑

k=1

f (n)
i

(
r (n)

k

)
f (n)

j

(
r (n)

k

)
r (n)

k w
(n)
k , (A6)

where w
(n)
k and r (n)

k are the quadrature weights and sample
points for the nth segment, respectively. For segments with
rn−1 � R, the radial coordinate is transformed according to
Eq. (4) and the matrix elements must be modified accordingly.
The integral element dr must be multiplied by eiφ , and r must
be replaced by the transformation in Eq. (4), all the while
keeping the argument of the basis functions unchanged. As
an example, the segmentwise overlap matrix becomes

S(n)
i j ≈

K∑
k=1

{
f (n)
i

(
r (n)

k

)
f (n)

j

(
r (n)

k

)[
R + (

r (n)
k − R

)
eiφ

]
w

(n)
k eiφ

}
.

(A7)

The segmentwise matrices are then collected into the com-
plete radial overlap matrix Sr such that the last row and
column of each segmentwise matrix overlaps with the first
row and column of the next (see Ref. [51] for a visual demon-
stration). This conveniently enforces Eq. (A4). The complete
overlap matrix S is then a block-diagonal matrix with blocks
consisting of π (1 + δm0)Sr for m = 0, . . . , M. The Hamilton
matrix can be constructed in a similar manner, keeping in
mind that d

dr fi should be replaced by e−iφ d
dr fi for segments

outside the scaling radius, and that the (untransformed) seg-
mentwise kinetic matrix elements are given by

T (n)
i j = 1

2

∫ rn

rn−1

dfi

dr

df j

dr
r dr, (A8)

to comply with the correct definition of the kinetic energy in
an FE basis [37,53]. The transformed Wannier equation is then
readily solved as a matrix eigenvalue problem.

APPENDIX B: COMPUTATIONAL PROCEDURE
FOR THE ASYMPTOTIC COEFFICIENT

Grid-based finite-difference methods (FDMs) are able to ef-
ficiently reproduce the correct behavior of the wave function
for all values of r, as long as a dense enough grid is used.
Numerov’s method is a fourth-order FDM, on par with the
fourth-order Runge-Kutta method. However, the advantage is
that it is simpler to implement. The ground-state wave func-
tion can be presented in the form ψ0(r) = r−1/2P(r), which
transforms Eq. (7) (with ε = 0) to the differential equation

d2P(r)

dr2
+ g(r)P(r) = 0, (B1)

where

g(r) = 1

4r2
+ 2[E0 + w(r)]. (B2)

We now assume E0 is known (it can easily be calculated
by, e.g., diagonalizing a Gaussian basis or performing a
variational calculation). Numerov’s method then reduces this
equation to the finite-difference equation

fn−1Pn−1 = (12 − 10 fn)Pn − fn+1Pn+1, (B3)

where Pn = P(rn) and fn = 1 + (�r)2gn/12 with gn = g(rn).
The N + 1 discrete points rn are defined as rn = n�r, where
n = 0, . . . , N and �r = rN/N . The two initial points are then
chosen as PN = 0 for some large rN and to comply with
Eq. (16) for rN−1. Integrating toward r = 0 then yields P
at all rn. The fitting procedure described in the main text is
then implemented by fitting Eq. (18) to Eq. (19) in a region
r ∈ [( j − 1)40, j40], where j = 1, 2, . . . , until convergence
to four significant digits. The same P is then used in Eq. (25)
and the agreeing significant digits (up to fourth order) are
presented in Table I.
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