20,403 research outputs found

    X-ray Emission from Haloes of Simulated Disc Galaxies

    Get PDF
    Bolometric and 0.2-2 keV X-ray luminosities of the hot gas haloes of simulated disc galaxies have been calculated at redshift z=0. The TreeSPH simulations are fully cosmological and the sample of 44 disc galaxies span a range in characteristic circular speeds of V_c = 130-325 km/s. The galaxies have been obtained in simulations with a considerable range of physical parameters, varying the baryonic fraction, the gas metallicity, the meta-galactic UV field, the cosmology, the dark matter type, and also the numerical resolution. The models are found to be in agreement with the (few) relevant X-ray observations available at present. The amount of hot gas in the haloes is also consistent with constraints from pulsar dispersion measures in the Milky Way. Forthcoming XMM and Chandra observations should enable much more stringent tests and provide constraints on the physical parameters. We find that simple cooling flow models over-predict X-ray luminosities by up to two orders of magnitude for high (but still realistic) cooling efficiencies relative to the models presented here. Our results display a clear trend that increasing cooling efficiency leads to decreasing X-ray luminosities at z=0. The reason is found to be that increased cooling efficiency leads to a decreased fraction of hot gas relative to total baryonic mass inside of the virial radius at present. At gas metal abundances of a third solar this hot gas fraction becomes as low as just a few percent. We also find that most of the X-ray emission comes from the inner parts (inner about 20 kpc) of the hot galactic haloes. Finally, we find for realistic choices of the physical parameters that disc galaxy haloes possibly were more than one order of magnitude brighter in soft X-ray emission at z=1, than at present.Comment: 8 pages, 7 figures, MNRAS LaTeX forma

    A library of ab initio Raman spectra for automated identification of 2D materials

    Full text link
    Raman spectroscopy is frequently used to identify composition, structure and layer thickness of 2D materials. Here, we describe an efficient first-principles workflow for calculating resonant first-order Raman spectra of solids within third-order perturbation theory employing a localized atomic orbital basis set. The method is used to obtain the Raman spectra of 733 different monolayers selected from the computational 2D materials database (C2DB). We benchmark the computational scheme against available experimental data for 15 known monolayers. Furthermore, we propose an automatic procedure for identifying a material based on an input experimental Raman spectrum and illustrate it for the cases of MoS2_2 (H-phase) and WTe2_2 (T^\prime-phase). The Raman spectra of all materials at different excitation frequencies and polarization configurations are freely available from the C2DB. Our comprehensive and easily accessible library of \textit{ab initio} Raman spectra should be valuable for both theoreticians and experimentalists in the field of 2D materialsComment: 17 pages, 7 figure

    Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace

    Full text link
    In this paper, we propose a way to achieve protected universal computation in a neutral atom quantum computer subject to collective dephasing. Our proposal relies on the existence of a Decoherence Free Subspace (DFS), resulting from symmetry properties of the errors. After briefly describing the physical system and the error model considered, we show how to encode information into the DFS and build a complete set of safe universal gates. Finally, we provide numerical simulations for the fidelity of the different gates in the presence of time-dependent phase errors and discuss their performance and practical feasibility.Comment: 7 pages, 8 figure

    Experimental and numerical study of error fields in the CNT stellarator

    Full text link
    Sources of error fields were indirectly inferred in a stellarator by reconciling computed and numerical flux surfaces. Sources considered so far include the displacements and tilts (but not the deformations, yet) of the four circular coils featured in the simple CNT stellarator. The flux surfaces were measured by means of an electron beam and phosphor rod, and were computed by means of a Biot-Savart field-line tracing code. If the ideal coil locations and orientations are used in the computation, agreement with measurements is poor. Discrepancies are ascribed to errors in the positioning and orientation of the in-vessel interlocked coils. To that end, an iterative numerical method was developed. A Newton-Raphson algorithm searches for the coils' displacements and tilts that minimize the discrepancy between the measured and computed flux surfaces. This method was verified by misplacing and tilting the coils in a numerical model of CNT, calculating the flux surfaces that they generated, and testing the algorithm's ability to deduce the coils' displacements and tilts. Subsequently, the numerical method was applied to the experimental data, arriving at a set of coil displacements whose resulting field errors exhibited significantly improved quantitative and qualitative agreement with experimental results.Comment: Special Issue on the 20th International Stellarator-Heliotron Worksho

    Inflammation and changes in cytokine levels in neurological feline infectious peritonitis.

    Get PDF
    Feline infectious peritonitis (FIP) is a progressive, fatal, predominantly Arthus-type immune-mediated disease that is triggered when cats are infected with a mutant enteric coronavirus. The disease presents variably with multiple organ failure, seizures, generalized effusion, or shock. Neurological FIP is clinically and pathologically more homogeneous than systemic 'wet' or 'dry' FIP; thus, comparison of cytokine profiles from cats with neurological FIP, wet FIP, and non-FIP neurological disease may provide insight into some baseline characteristics relating to the immunopathogenesis of neurological FIP. This study characterizes inflammation and changes in cytokines in the brain tissue of FIP-affected cats. Cellular infiltrates in cats with FIP included lymphocytes, plasma cells, neutrophils, macrophages, and eosinophils. IL-1 beta, IL-6, IL-12, IL-18, TNF-alpha, macrophage inhibitory protein (MIP)-1 alpha, and RANTES showed no upregulation in the brains of control cats, moderate upregulation in neurological FIP cats, and very high upregulation in generalized FIP cats. Transcription of IFN-gamma appeared upregulated in cats with systemic FIP and slightly downregulated in neurological FIP. In most cytokines tested, variance was extremely high in generalized FIP and much less in neurological FIP. Principal components analysis was performed in order to find the least number of 'components' that would summarize the cytokine profiles in cats with neurological FIP. A large component of the variance (91.7%) was accounted for by levels of IL-6, MIP-1 alpha, and RANTES. These findings provide new insight into the immunopathogenesis of FIP and suggest targets for immune therapy of this disease

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T023oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter

    Ptychographic X-ray computed tomography of extended colloidal networks in food emulsions

    Get PDF
    As a main structural level in colloidal food materials, extended colloidal networks are important for texture and rheology. By obtaining the 3D microstructure of the network, macroscopic mechanical properties of the material can be inferred. However, this approach is hampered by the lack of suitable non-destructive 3D imaging techniques with submicron resolution. We present results of quantitative ptychographic X-ray computed tomography applied to a palm kernel oil based oil-in-water emulsion. The measurements were carried out at ambient pressure and temperature. The 3D structure of the extended colloidal network of fat globules was obtained with a resolution of around 300 nm. Through image analysis of the network structure, the fat globule size distribution was computed and compared to previous findings. In further support, the reconstructed electron density values were within 4% of reference values.Comment: 19 pages, 4 figures, to be published in Food Structur
    corecore