162 research outputs found

    Glucocorticoid-induced diabetes in patients with metastatic spinal cord compression

    Get PDF
    Background: The risk of developing diabetes mellitus (DM) during treatment with high-dose glucocorticoids is unknown and monitoring of glucose is random in many settings. Objective: To determine incidence of and risk factors for induction of DM during high-dose glucocorticoid therapy of metastatic spinal cord compression (MSCC) in patients referred to radiotherapy. Furthermore, to describe the time course of development of DM. Subjects and methods: 140 patients were recruited (131 were included in the analysis) with MSCC receiving high-dose glucocorticoid ≥100 mg prednisolone per day were included in a prospective, observational cohort study. The primary endpoint was development of DM defined by two or more plasma glucose values ≥11.1 mmol/L. Plasma glucose was monitored on a daily basis for 12 days during radiotherapy. Results: Fifty-six of the patients (43%; 95% CI 35–52%) were diagnosed with DM based on plasma glucose measurements during the study period. Sixteen patients, 12% (95% CI 6–18%), were treated with insulin. At multivariate analysis, only high baseline HbA1c predicted the development of insulin-treated DM. An HbA1c-value <39 mmol/mol was associated with a negative predictive value of 96% for not developing DM needing treatment with insulin. The diagnosis of diabetes with need for insulin treatment was made within 7 days in 14 of the 16 (88%; 95% CI 72–100%) patients. Conclusion: The risk of developing DM during treatment with high-dose glucocorticoids in patients with MSCC referred to radiotherapy is high in the first treatment week. Only referral HbA1c predicts the development of DM

    Sudden cardiac death among persons with diabetes aged 1-49 years:a 10-year nationwide study of 14 294 deaths in Denmark

    Get PDF
    Aims The aim of this study was to compare nationwide incidence rate (IR) of sudden cardiac death (SCD) in persons aged 1–49 years with and without diabetes mellitus (DM). Methods and results The study population consisted of all persons in Denmark aged 1–49 years in 2000–09, which equals 27.1 million person-years. All 14 294 deaths in the 10-year period were included. By using the highly descriptive Danish death certificates, 1698 cases of sudden and unexpected death were identified. Through review of autopsy reports, discharge summaries, and the Danish registries, we identified 1363 cases of SCD. The Danish Register of Medicinal Product Statistics was used to identify persons with type 1 DM and type 2 DM. Among the 14 294 decedents, there were 669 with DM, of which 118 suffered SCD (9% of all SCD), making SCD the leading cause of death among young persons with DM. Among those aged 1–35 years, the IR of SCD-DM was 21.9 per 100 000 person-years compared to 2.6 per 100 000 person-years among persons without DM [IR ratio 8.6, 95% confidence interval (CI) 5.8–28.6]. Within the age range 36–49 years, the IR among persons with DM was 119.8 per 100 000 person-years compared to 19.7 per 100 000 person-years among persons without DM (IR ratio 6.1, 95% CI 4.7–7.8). Conclusion We found that young persons with DM aged 1–35 years had >8-fold higher SCD IR compared to young persons without DM. Our study highlights the need for early cardiovascular risk monitoring and assessment in young persons with DM.This work was supported by the Novo Nordisk Foundation, Copenhagen, Denmark [NNFOC140011573]. JS, reciewed salary from the Department of Forensic Medicine, Univiserty of Copenhagen

    The impact of hypoglycaemia on quality of life among adults with type 1 diabetes:Results from “YourSAY: Hypoglycaemia”

    Get PDF
    Aims Research on hypoglycaemia and quality of life (QoL) has focused mostly on severe hypoglycaemia and psychological outcomes, with less known about other aspects of hypoglycaemia (e.g., self-treated episodes) and impacts on other QoL domains (e.g., relationships). Therefore, we examined the impact of all aspects of hypoglycaemia on QoL in adults with type 1 diabetes (T1DM). Methods Participants completed an online survey, including assessment of hypoglycaemia-specific QoL (using the 12-item Hypoglycaemia Impact Profile). Mann-Whitney U tests examined differences in hypoglycaemia-specific QoL by hypoglycaemia frequency, severity, and awareness. Hierarchical linear regression examined associations with QoL. Results Participants were 1028 adults with T1DM (M ± SD age: 47 ± 15 years; diabetes duration: 27 ± 16 years). Severe and self-treated hypoglycaemia and impaired awareness negatively impacted on overall QoL and several QoL domains, including leisure activities, physical health, ability to keep fit/be active, sleep, emotional well-being, spontaneity, independence, work/studies, and dietary freedom. Diabetes distress was most strongly associated with hypoglycaemia-specific QoL, followed by generic emotional well-being, fear of hypoglycaemia, and confidence in managing hypoglycaemia. Hypoglycaemia frequency and awareness were no longer significantly associated with QoL once psychological factors were considered. Conclusions Hypoglycaemia negatively impacts on several QoL domains. Psychological factors supersede the effect of hypoglycaemia frequency and awareness in accounting for this negative impact

    Hypoglycaemia induces a sustained pro-inflammatory response in people with type 1 diabetes and healthy controls

    Get PDF
    Aim: To determine the duration and the extension of the pro-inflammatory response to hypoglycaemia both in people with type 1 diabetes and healthy controls. Materials and Methods: Adults with type 1 diabetes (n = 47) and matched controls (n = 16) underwent a hyperinsulinaemic-euglycaemic hypoglycaemic (2.8 ± 0.1 mmoL/L [49.9 ± 2.3 mg/dL]) glucose clamp. During euglycaemia, hypoglycaemia, and 1, 3 and 7 days later, blood was drawn to determine immune cell phenotype, monocyte function and circulating inflammatory markers. Results: Hypoglycaemia increased lymphocyte and monocyte counts, which remained elevated for 1 week. The proportion of CD16+ monocytes increased and the proportion of CD14+ monocytes decreased. During hypoglycaemia, monocytes released more tumour necrosis factor-a and interleukin-1ß, and less interleukin-10, after ex vivo stimulation. Hypoglycaemia increased the levels of 19 circulating inflammatory proteins, including high sensitive C-reactive protein, most of which remained elevated for 1 week. The epinephrine peak in response to hypoglycaemia was positively correlated with immune cell number and phenotype, but not with the proteomic response. Conclusions: Overall, despite differences in prior exposure to hypoglycaemia, the pattern of the inflammatory responses to hypoglycaemia did not differ between people with type 1 diabetes and healthy controls. In conclusion, hypoglycaemia induces a range of pro-inflammatory responses that are sustained for at least 1 week in people with type 1 diabetes and healthy controls

    The impact of prior exposure to hypoglycaemia on the inflammatory response to a subsequent hypoglycaemic episode

    Get PDF
    BACKGROUND: Hypoglycaemia has been shown to induce a systemic pro-inflammatory response, which may be driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro-inflammatory response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses to subsequent hypoglycaemia in humans.METHODS: Healthy participants (n = 32) were recruited and randomised to two 2-h episodes of either hypoglycaemia or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to determine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins including hs-CRP.RESULTS: In the group undergoing antecedent hypoglycaemia, the adrenaline response to next-day hypoglycaemia was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated for the whole week. Also, the proportion of pro-inflammatory CD16+-monocytes increased during hypoglycaemia. After ex vivo stimulation, monocytes released more TNF-α and IL-1β, and less IL-10 in response to hypoglycaemia, whereas levels of 19 circulating inflammatory proteins, including hs-CRP, increased for up to 1 week after the hypoglycaemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro-inflammatory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia.CONCLUSION: Hypoglycaemia induces an acute and persistent pro-inflammatory response at multiple levels that occurs largely, but not completely, independent of prior exposure to hypoglycaemia. Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).</p

    The impact of prior exposure to hypoglycaemia on the inflammatory response to a subsequent hypoglycaemic episode

    Get PDF
    BACKGROUND: Hypoglycaemia has been shown to induce a systemic pro-inflammatory response, which may be driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro-inflammatory response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses to subsequent hypoglycaemia in humans.METHODS: Healthy participants (n = 32) were recruited and randomised to two 2-h episodes of either hypoglycaemia or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to determine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins including hs-CRP.RESULTS: In the group undergoing antecedent hypoglycaemia, the adrenaline response to next-day hypoglycaemia was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated for the whole week. Also, the proportion of pro-inflammatory CD16+-monocytes increased during hypoglycaemia. After ex vivo stimulation, monocytes released more TNF-α and IL-1β, and less IL-10 in response to hypoglycaemia, whereas levels of 19 circulating inflammatory proteins, including hs-CRP, increased for up to 1 week after the hypoglycaemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro-inflammatory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia.CONCLUSION: Hypoglycaemia induces an acute and persistent pro-inflammatory response at multiple levels that occurs largely, but not completely, independent of prior exposure to hypoglycaemia. Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).</p

    Correction:Chronic hyperglycaemia increases the vulnerability of the hippocampus to oxidative damage induced during post-hypoglycaemic hyperglycaemia in a mouse model of chemically induced type 1 diabetes

    Get PDF
    Correction: Diabetologia (2023) 66:1340-1352 https://doi.org/10.1007/s00125-023-05907-6The Original Article was published on 04 April 2023Unfortunately, the funding statement included in this paper did not fully satisfy the reporting requirements of the funder. The original article has been updated to include the sentence: ‘This paper reflects the authors’ views and the JU is not responsible for any use that may be made of the information it contains’

    Counterregulatory hormone and symptom responses to hypoglycaemia in people with type 1 diabetes, insulin-treated type 2 diabetes or without diabetes:the Hypo-RESOLVE hypoglycaemic clamp study

    Get PDF
    Aim: The sympathetic nervous and hormonal counterregulatory responses to hypoglycaemia differ between people with type 1 and type 2 diabetes and may change along the course of diabetes, but have not been directly compared. We aimed to compare counterregulatory hormone and symptom responses to hypoglycaemia between people with type 1 diabetes, insulin-treated type 2 diabetes and controls without diabetes, using a standardised hyperinsulinaemic-hypoglycaemic clamp. Materials: We included 47 people with type 1 diabetes, 15 with insulin-treated type 2 diabetes, and 32 controls without diabetes. Controls were matched according to age and sex to the people with type 1 diabetes or with type 2 diabetes. All participants underwent a hyperinsulinaemic–euglycaemic-(5.2 ± 0.4 mmol/L)-hypoglycaemic-(2.8 ± 0.13 mmol/L)-clamp. Results: The glucagon response was lower in people with type 1 diabetes (9.4 ± 0.8 pmol/L, 8.0 [7.0–10.0]) compared to type 2 diabetes (23.7 ± 3.7 pmol/L, 18.0 [12.0–28.0], p &lt; 0.001) and controls (30.6 ± 4.7, 25.5 [17.8–35.8] pmol/L, p &lt; 0.001). The adrenaline response was lower in type 1 diabetes (1.7 ± 0.2, 1.6 [1.3–5.2] nmol/L) compared to type 2 diabetes (3.4 ± 0.7, 2.6 [1.3–5.2] nmol/L, p = 0.001) and controls (2.7 ± 0.4, 2.8 [1.4–3.9] nmol/L, p = 0.012). Growth hormone was lower in people with type 2 diabetes than in type 1 diabetes, at baseline (3.4 ± 1.6 vs 7.7 ± 1.3 mU/L, p = 0.042) and during hypoglycaemia (24.7 ± 7.1 vs 62.4 ± 5.8 mU/L, p = 0.001). People with 1 diabetes had lower overall symptom responses than people with type 2 diabetes (45.3 ± 2.7 vs 58.7 ± 6.4, p = 0.018), driven by a lower neuroglycopenic score (27.4 ± 1.8 vs 36.7 ± 4.2, p = 0.012). Conclusion: Acute counterregulatory hormone and symptom responses to experimental hypoglycaemia are lower in people with type 1 diabetes than in those with long-standing insulin-treated type 2 diabetes and controls.</p

    Correction:Chronic hyperglycaemia increases the vulnerability of the hippocampus to oxidative damage induced during post-hypoglycaemic hyperglycaemia in a mouse model of chemically induced type 1 diabetes

    Get PDF
    Correction: Diabetologia (2023) 66:1340-1352 https://doi.org/10.1007/s00125-023-05907-6The Original Article was published on 04 April 2023Unfortunately, the funding statement included in this paper did not fully satisfy the reporting requirements of the funder. The original article has been updated to include the sentence: ‘This paper reflects the authors’ views and the JU is not responsible for any use that may be made of the information it contains’
    corecore