10,380 research outputs found

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    Full text link
    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A. Lavrinenko and P. J. Robert

    The [Y/Mg] clock works for evolved solar metallicity stars

    Get PDF
    Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log⁥g\log g is determined to much higher precision than what is possible with spectroscopy. It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&

    Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices

    Full text link
    Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applications, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one third of the total number of hexagons in the unit cell. Furthermore, we investigate non-isosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry

    HST Observations of the Host Galaxy of GRB970508

    Get PDF
    We report on observations of the field of GRB~970508 made in early August 1998, 454 days after outburst, with the STIS CCD camera onboard the Hubble Space Telescope. The images, taken in open filter (50CCD) mode, clearly reveal the presence of a galaxy which was obscured in earlier (June 1997) HST images by emission from the optical transient (OT). The galaxy is regular in shape: after correcting for the HST/STIS PSF, it is well-fitted by an exponential disk with a scale length of 0."046 +/- 0."006 and an ellipticity of 0.70 +/- 0.07. All observations are marginally consistent with a continuous decline in OT emission as t^{-1.3} beginning two days after outburst; however, we find no direct evidence in the image for emission from the OT, and the surface brightness profile of the galaxy is most regular if we assume that the OT emission is negligible, suggesting that the OT may have faded more rapidly at late times than is predicted by the power-law decay. Due to the wide bandwidth of the STIS clear mode, the estimated magnitude of the galaxy is dependent on the galaxy spectrum that is assumed. Using colors obtained from late-time ground-based observations to constrain the spectrum, we find V = 25.4 +/- 0.15, a few tenths of a magnitude brighter than earlier ground-based estimates that were obtained by observing the total light of the galaxy and the OT and then subtracting the estimated OT brightness assuming it fades as a single power-law. This again suggests that the OT may have faded faster at late time than the power-law predicts. The position of the OT agrees with that of the isophotal center of the galaxy to 0."01. This remarkable agreement raises the possibility that the GRB may have been associated with either an active galactic nucleus or a nuclear starburst.Comment: Submitted to the Astrophysical Journal (Letters). Thirteen pages, three encapsulated figures. Abstract slightly abridge

    Limits of the dynamical approach to non-linear response of mesoscopic systems

    Full text link
    We have considered the nonlinear response of mesoscopic systems of non-interacting electrons to the time-dependent external field. In this consideration the inelastic processes have been neglected and the electron thermalization occurs due to the electron exchange with the reservoirs. We have demonstrated that the diagrammatic technique based on the method of analytical continuation or on the Keldysh formalism is capable to describe the heating automatically. The corresponding diagrams contain a novel element, {\it the loose diffuson}. We have shown the equivalence of such a diagrammatic technique to the solution to the kinetic equation for the electron energy distribution function. We have identified two classes of problems with different behavior under ac pumping. In one class of problems (persistent current fluctuations, Kubo conductance) the observable depends on the electron energy distribution renormalized by heating. In another class of problems (Landauer conductance) the observable is insensitive to heating and depends on the temperature of electron reservoirs. As examples of such problems we have considered in detail the persistent current fluctuations under ac pumping and two types of conductance measurements (Landauer conductance and Kubo conductance) that behave differently under ac pumping.Comment: 21 pages, RevTex, 10 eps.figures; final version to appear in Phys.Rev.

    Measurement-based modeling of bromine chemistry at the Dead Sea boundary layer ? Part 2: The influence of NO<sub>2</sub> on bromine chemistry at mid-latitude areas

    No full text
    International audienceUnderstanding the interaction between anthropogenic air pollution and Reactive Halogen Species (RHS) activity has had only limited support of direct field measurements, due to the fact that past field measurements of RHS have been mainly performed in Polar Regions. The present paper investigates the interaction between NO2 and Reactive Bromine Species (RBS) activity by model simulations based on extensive field measurements performed in the Dead Sea area, as described in a companion paper (Tas et al., 2006). The Dead Sea is an excellent natural laboratory for this investigation since elevated concentrations of BrO (up to more than 150 pptv) are frequently observed, while the average levels of NO2 are around several ppb. The results of the present study show that under the chemical mechanisms that occur at the Dead Sea, higher levels of NO2 lead to higher daily average concentrations of BrOX, as a result of an increase in the rate of the heterogeneous decomposition of BrONO2 that in turn causes an increase in the rate of the "Bromine Explosion" mechanism. The present study has shown that the influence of NO2 on BrOX production clearly reflects an enhancement of RBS activity caused by anthropogenic activity. However, above a certain threshold level of NO2 (daily average mixing ratios of 0.2 ppbv during RBS activity), the daily average concentrations of BrOX decrease for a further increase in the NO2 concentrations

    Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    Get PDF
    International audienceThe Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS) chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br? present in the Dead Sea water. Furthermore, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br). The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the jagged diurnal pattern of BrO observed in the Dead Sea area, and for the positive correlation observed between BrO and O3 at low O3 concentrations. The present study has shown that the heterogeneous decomposition of BrONO2 has a great potential to affect the RBS activity in areas influenced by anthropogenic emissions, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes

    LandmÊnds opfattelser af natur og aktuel naturkvalitet pÄ bedriften. Cross cutting rapport for CC3

    Get PDF
    Landmanden er en vÊsentlig aktÞr i forhold til at udvikle og forbedre natur og landskabskvaliteter pÄ de Þkologiske bedrifter. SpÞrgsmÄlet er imidlertid, om der er en sammenhÊng mellem den mÄde landmanden opfatter vÊrdier i natur og landskab pÄ, den mÄde han handler og forvalter i forhold til disse vÊrdier, og sÄ den naturkvalitet han set udfra en biologisk synsvinkel har pÄ sin bedrift. Det spÞrgsmÄl blev der arbejdet med i en cross cutting Þvelse i projektet Naturkvalitet i Þkologisk jordbrug

    Spin-orbit interaction and the 'metal-insulator' transition observed in two-dimensional hole systems

    Full text link
    We present calculations of the spin and phase relaxation rates in GaAs/AlGaAs pp-type quantum wells. These rates are used to derive the temperature dependence of the weak-localization correction to the conductivity. In pp-type quantum wells both weak localization and weak anti-localization are present due to the strong spin-orbit interaction. When determining the total conductivity correction one also have to include the term due to hole-hole interaction. The magnitude of the latter depends on the ratio between the thermal energy and the Fermi energy, kBT/EFk_{\rm B}T/E_{\rm F} and whether the system can be considered as ballistic (kBTτtr/ℏ>1)(k_{\rm B}T \tau_{\rm tr} / \hbar>1) or diffusive (kBTτtr/ℏ<1k_{\rm B}T \tau_{\rm tr}/\hbar<1). We argue that due to the relatively low Fermi energy and the moderate mobilities, in the pp-type systems in question, the conductivity correction arising from hole-hole interactions is negligible at the highest temperatures accessible in the experiments. Hence the 'metal-insulator' transition observed at these relatively high temperatures could be caused by interference effects. We compare our calculations of the weak anti-localization correction with the experimental results from different independent groups with special emphasis on the experiments by Simmons et al. We find good agreement between predicted and observed transistion density pcp_{c}.Comment: 6 pages, 4 figures. Accepted to PRB (15 June, 2002
    • 

    corecore