44 research outputs found

    The impact of brain lateralization and Anxiety-Like behaviour in an extensive operant conditioning task in Zebrafish (Danio rerio)

    Get PDF
    漏 2019 by the authors. Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as 'functional brain lateralization'. However, the role of brain lateralization in learning abilities is still unclear. In addition, although recent studies suggest a link between some personality traits and accuracy in cognitive tasks, the relation between anxiety and learning skills in Skinner boxes needs to be clarified. In the present study, we tested the impact of brain lateralization and anxiety-like behaviour in the performance of an extensive operant conditioning task. Zebrafish tested in a Skinner box underwent 500 trials in a colour discrimination task (red vs. yellow and green vs. blue). To assess the degree of lateralization, fish were observed in a detour test in the presence of a dummy predator, and anxiety-like behaviour was studied by observing scototaxis response in an experimental tank divided into light and dark compartments. Although the low performance in the colour discrimination task did not permit the drawing of firm conclusions, no correlation was found between the accuracy in the colour discrimination task and the behaviour in the detour and scototaxis tests. This suggests that neither different degrees of asymmetries in brain lateralization nor anxiety may significantly impact the learning skills of zebrafish

    Searching for the Critical p of Macphail's Null Hypothesis: The Contribution of Numerical Abilities of Fish.

    Get PDF
    In 1985, Macphail argued that there are no differences among the intellects of non-human vertebrates and that humans display unique cognitive skills because of language. Mathematical abilities represent one of the most sophisticated cognitive skills. While it is unquestionable that humans exhibit impressive mathematical skills associated with language, a large body of experimental evidence suggests that Macphail hypothesis must be refined in this field. In particular, the evidence that also small-brained organisms, such as fish, are capable of processing numerical information challenges the idea that humans display unique cognitive skills. Like humans, fish may take advantage of using continuous quantities (such as the area occupied by the objects) as proxy of number to select the larger/smaller group. Fish and humans also showed interesting similarities in the strategy adopted to learn a numerical rule. Collective intelligence in numerical estimation has been also observed in humans and guppies. However, numerical acuity in humans is considerably higher than that reported in any fish species investigated, suggesting that quantitative but not qualitative differences do exist between humans and fish. Lastly, while it is clear that contextual factors play an important role in the performance of numerical tasks, inter-species variability can be found also when different fish species were tested in comparable conditions, a fact that does not align with the null hypothesis of vertebrate intelligence. Taken together, we believe that the recent evidence of numerical abilities in fish call for a deeper reflection of Macphail's hypothesis

    Is the Horizontal-Vertical Illusion Mainly a By-Product of Petter鈥檚 Rule?

    No full text
    The horizontal-vertical (HV) illusion is a classical example of an asymmetrical perception of size in the vertical and horizontal axes, also known as ‘anisotropy of the perceived space’. Several authors argued that the horizontally-oriented ellipse of the binocular visual field might play an important role in the emergence of this illusion. Alternatively, a length bisection bias and size-constancy mechanisms have been advocated to account for the asymmetrical perception in the two dimensions. To investigate this phenomenon, participants are commonly required to estimate the length of two separate lines, one vertical and one horizontal, often arranged in an inverted-T pattern. Here we suggest that this type of stimulus may introduce physical and subjective biases that prevent a fine investigation. In particular, we believe that Petter’s rule, that applies to two-dimensional patterns formed by two overlapping surfaces, may play a critical role that will not support an interpretation based on the shape of the binocular visual field nor a length bisection bias

    Anisotropy of perceived numerosity: Evidence for a horizontal\u2013vertical numerosity illusion

    No full text
    Many studies have investigated whether numerical and spatial abilities share similar cognitive systems. A novel approach to this issue consists of investigating whether the same perceptual biases underlying size illusions can be identified in numerical estimation tasks. In this study, we required adult participants to estimate the number of white dots in arrays made of white and black dots displayed in such a way as to generate horizontal\u2013vertical illusions with inverted T and L configurations. In agreement with previous literature, we found that participants tended to underestimate the target numbers. However, in the presence of the illusory patterns, participants were less inclined to underestimate the number of vertically aligned white dots. This reflects the perceptual biases underlying horizontal\u2013vertical illusions. In addition, we identified an enhanced illusory effect when participants observed vertically aligned white dots in the T shape compared to the L shape, a result that resembles the length bisection bias reported in the spatial domain. Overall, we found the first evidence that numerical estimation differs as a function of the vertical or horizontal displacement of the stimuli. In addition, the involvement of the same perceptual biases observed in spatial tasks supports the idea that spatial and numerical abilities share similar cognitive processes
    corecore