27 research outputs found
Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance
: Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy
Plasma extracellular vesicle messenger RNA profiling identifies prognostic EV signature for non-invasive risk stratification for survival prediction of patients with pancreatic ductal adenocarcinoma
Background
The prognosis of pancreatic ductal adenocarcinoma (PDAC) is one of the most dismal of all cancers and the median survival of PDAC patients is only 6–8 months after diagnosis. While decades of research effort have been focused on early diagnosis and understanding of molecular mechanisms, few clinically useful markers have been universally applied. To improve the treatment and management of PDAC, it is equally relevant to identify prognostic factors for optimal therapeutic decision-making and patient survival. Compelling evidence have suggested the potential use of extracellular vesicles (EVs) as non-invasive biomarkers for PDAC. The aim of this study was thus to identify non-invasive plasma-based EV biomarkers for the prediction of PDAC patient survival after surgery.
Methods
Plasma EVs were isolated from a total of 258 PDAC patients divided into three independent cohorts (discovery, training and validation). RNA sequencing was first employed to identify differentially-expressed EV mRNA candidates from the discovery cohort (n = 65) by DESeq2 tool. The candidates were tested in a training cohort (n = 91) by digital droplet polymerase chain reaction (ddPCR). Cox regression models and Kaplan–Meier analyses were used to build an EV signature which was subsequently validated on a multicenter cohort (n = 83) by ddPCR.
Results
Transcriptomic profiling of plasma EVs revealed differentially-expressed mRNAs between long-term and short-term PDAC survivors, which led to 10 of the top-ranked candidate EV mRNAs being tested on an independent training cohort with ddPCR. The results of ddPCR enabled an establishment of a novel prognostic EV mRNA signature consisting of PPP1R12A, SCN7A and SGCD for risk stratification of PDAC patients. Based on the EV mRNA signature, PDAC patients with high risk displayed reduced overall survival (OS) rates compared to those with low risk in the training cohort (p = 0.014), which was successfully validated on another independent cohort (p = 0.024). Interestingly, the combination of our signature and tumour stage yielded a superior prognostic performance (p = 0.008) over the signature (p = 0.022) or tumour stage (p = 0.016) alone. It is noteworthy that the EV mRNA signature was demonstrated to be an independent unfavourable predictor for PDAC prognosis.
Conclusion
This study provides a novel and non-invasive prognostic EV mRNA signature for risk stratification and survival prediction of PDAC patients
Inhibition of Six1 affects tumour invasion and the expression of cancer stem cell markers in pancreatic cancer
A Comprehensive MicroRNA Expression Profile of Liver and Lung Metastases of Colorectal Cancer with Their Corresponding Host Tissue and Its Prognostic Impact on Survival
MicroRNAs are small non-coding RNAs with a length of 18–25 nucleotides. They can regulate tumor invasion and metastasis by changing the expression and translation of their target mRNAs. Their expression is substantially altered in colorectal cancer cells as well as in the adjacent tumor-associated stroma. Both of these compartments have a mutual influence on tumor progression. In the development of metastases, cancer cells initially interact with the host tissue. Therefore, compartment-specific expression signatures of these three locations—tumor, associated stroma, and host tissue—can provide new insights into the complex tumor biology of colorectal cancer. Frozen tissue samples of colorectal liver (n = 25) and lung metastases (n = 24) were laser microdissected to separate tumor cells and the adjacent tumor-associated stroma cells. Additionally, normal lung and liver tissue was collected from the same patients. We performed a microarray analysis in four randomly selected liver metastases and four randomly selected lung metastases, analyzing a total of 939 human miRNAs. miRNAs with a significant change >2-fold between the tumor, tumor stroma, and host tissue were analyzed in all samples using RT-qPCR (11 miRNAs) and correlated with the clinical data. We found a differential expression of several miRNAs between the tumor, the tumor-associated stroma, and the host tissue compartment. When comparing liver and lung metastases, miR-194 showed a 1.5-fold; miR-125, miR-127, and miR-192 showed a 2.5-fold; miR-19 and miR-215 a 3-fold; miR-145, miR-199-3, and miR-429 a 5-fold; miR-21 a 7-fold; and, finally, miR-199-5 a 12.5-fold downregulation in liver metastases compared to lung metastases. Furthermore miR-19, miR-125, miR-127, miR-192, miR-194, miR-199-5, and miR-215 showed a significant upregulation in the normal liver tissue compared to the normal lung tissue. Univariate analysis identified an association of poor survival with the expression of miR-125 (p = 0.05), miR-127 (p = 0.001), miR-145 (p = 0.005), miR-192 (p = 0.015), miR-194 (0.003), miR-199-5 (p = 0.008), miR-215 (p < 0.001), and miR-429 (p = 0.03) in the host liver tissue of the liver metastases. Colorectal liver and lung metastases have a unique miRNA expression profile. miRNA expression in the host tissue of colorectal liver metastases seems to be able to influence tumor progression and survival. These findings can be used in the development of tailored therapies
Free intraperitoneal tumor cells and outcome in gastric cancer patients: a systematic review and meta-analysis
Selective decontamination of the digestive tract in colorectal surgery reduces anastomotic leakage and costs: a propensity score analysis
Abstract
Purpose
Anastomotic leakage (AL) and surgical site infection (SSI) account for most postoperative complications in colorectal surgery. The aim of this retrospective trial was to investigate whether perioperative selective decontamination of the digestive tract (SDD) reduces these complications and to provide a cost-effectiveness model for elective colorectal surgery.
Methods
All patients operated between November 2016 and March 2020 were included in our analysis. Patients in the primary cohort (PC) received SDD and those in the historical control cohort (CC) did not receive SDD. In the case of rectal/sigmoid resection, SDD was also applied via a transanally placed Foley catheter (TAFC) for 48 h postoperatively. A propensity score-matched analysis was performed to identify risk factors for AL and SSI. Costs were calculated based on German diagnosis-related group (DRG) fees per case.
Results
A total of 308 patients (154 per cohort) with a median age of 62.6 years (IQR 52.5–70.8) were analyzed. AL was observed in ten patients (6.5%) in the PC and 23 patients (14.9%) in the CC (OR 0.380, 95% CI 0.174–0.833; P = 0.016). SSI occurred in 14 patients (9.1%) in the PC and 30 patients in the CC (19.5%), representing a significant reduction in our SSI rate (P = 0.009). The cost-effectiveness analysis showed that SDD is highly effective in saving costs with a number needed to treat of 12 for AL and 10 for SSI.
Conclusion
SDD significantly reduces the incidence of AL and SSI and saves costs for the general healthcare system.
</jats:sec
Selective decontamination of the digestive tract in colorectal surgery reduces anastomotic leakage and costs: a propensity score analysis
Purpose Anastomotic leakage (AL) and surgical site infection (SSI) account for most postoperative complications in colorectal surgery. The aim of this retrospective trial was to investigate whether perioperative selective decontamination of the digestive tract (SDD) reduces these complications and to provide a cost-effectiveness model for elective colorectal surgery. Methods All patients operated between November 2016 and March 2020 were included in our analysis. Patients in the primary cohort (PC) received SDD and those in the historical control cohort (CC) did not receive SDD. In the case of rectal/sigmoid resection, SDD was also applied via a transanally placed Foley catheter (TAFC) for 48 h postoperatively. A propensity score-matched analysis was performed to identify risk factors for AL and SSI. Costs were calculated based on German diagnosis-related group (DRG) fees per case. Results A total of 308 patients (154 per cohort) with a median age of 62.6 years (IQR 52.5–70.8) were analyzed. AL was observed in ten patients (6.5%) in the PC and 23 patients (14.9%) in the CC (OR 0.380, 95% CI 0.174–0.833; P = 0.016). SSI occurred in 14 patients (9.1%) in the PC and 30 patients in the CC (19.5%), representing a significant reduction in our SSI rate (P = 0.009). The cost-effectiveness analysis showed that SDD is highly effective in saving costs with a number needed to treat of 12 for AL and 10 for SSI. Conclusion SDD significantly reduces the incidence of AL and SSI and saves costs for the general healthcare system
The use and future perspective of Artificial Intelligence—A survey among German surgeons
Purpose
Clinical abundance of artificial intelligence has increased significantly in the last decade. This survey aims to provide an overview of the current state of knowledge and acceptance of AI applications among surgeons in Germany.
Methods
A total of 357 surgeons from German university hospitals, academic teaching hospitals and private practices were contacted by e-mail and asked to participate in the anonymous survey.
Results
A total of 147 physicians completed the survey. The majority of respondents (n = 85, 52.8%) stated that they were familiar with AI applications in medicine. Personal knowledge was self-rated as average (n = 67, 41.6%) or rudimentary (n = 60, 37.3%) by the majority of participants. On the basis of various application scenarios, it became apparent that the respondents have different demands on AI applications in the area of “diagnosis confirmation” as compared to the area of “therapy decision.” For the latter category, the requirements in terms of the error level are significantly higher and more respondents view their application in medical practice rather critically. Accordingly, most of the participants hope that AI systems will primarily improve diagnosis confirmation, while they see their ethical and legal problems with regard to liability as the main obstacle to extensive clinical application.
Conclusion
German surgeons are in principle positively disposed toward AI applications. However, many surgeons see a deficit in their own knowledge and in the implementation of AI applications in their own professional environment. Accordingly, medical education programs targeting both medical students and healthcare professionals should convey basic knowledge about the development and clinical implementation process of AI applications in different medical fields, including surgery
Interleukin-8 is superior to CRP for the prediction of severe complications in a prospective cohort of patients undergoing major liver resection
Introduction:
Early detection of severe complications may reduce morbidity and mortality in patients undergoing hepatic resection. Therefore, we prospectively evaluated a panel of inflammatory blood markers for their value in predicting postoperative complications in patients undergoing liver surgery.
Methods:
A total of 139 patients undergoing liver resections (45 wedge resections, 49 minor resections, and 45 major resections) were prospectively enrolled between August 2017 and December 2018. Leukocytes, CRP, neutrophil-lymphocyte ratio (NLR), thrombocyte-lymphocyte ratio (TLR), bilirubin, INR, and interleukin-6 and -8 (IL-6 and IL-8) were measured in blood drawn preoperatively and on postoperative days 1, 4, and 7. IL-6 and IL-8 were measured using standardized immunoassays approved for in vitro diagnostic use in Germany. ROC curve analysis was used to determine predictive values for the occurrence of severe postoperative complications (CDC ≥ 3).
Results:
For wedge and minor resections, leukocyte counts at day 7 (AUC 0.80 and 0.82, respectively), IL-6 at day 7 (AUC 0.74 and 0.73, respectively), and CRP change (∆CRP) at day 7 (AUC 0.72 and 0.71, respectively) were significant predictors of severe postoperative complications. IL-8 failed in patients undergoing wedge resections, but was a significant predictor of severe complications after minor resections on day 7 (AUC 0.79), had the best predictive value in all patients on days 1, 4, and 7 (AUC 0.72, 0.72, and 0.80, respectively), and was the only marker with a significant predictive value in patients undergoing major liver resections (AUC on day 1: 0.70, day 4: 0.86, and day 7: 0.92). No other marker, especially not CRP, was predictive of severe complications after major liver surgery.
Conclusion:
IL-8 is superior to CRP in predicting severe complications in patients undergoing major hepatic resection and should be evaluated as a biomarker for patients undergoing major liver surgery. This is the first paper demonstrating a feasible implementation of IL-8 analysis in a clinical setting
