583 research outputs found

    Synchronization time in a hyperbolic dynamical system with long-range interactions

    Full text link
    We show that the threshold of complete synchronization in a lattice of coupled non-smooth chaotic maps is determined by linear stability along the directions transversal to the synchronization subspace. We examine carefully the sychronization time and show that a inadequate observation of the system evolution leads to wrong results. We present both careful numerical experiments and a rigorous mathematical explanation confirming this fact, allowing for a generalization involving hyperbolic coupled map lattices.Comment: 22 pages (preprint format), 4 figures - accepted for publication in Physica A (June 28, 2010

    Video monitoring of the persistent strombolian activity of Stromboli volcano represents a window on its plumbing system and an opportunity for understanding the eruptive processes

    Get PDF
    Since 1994 a video-surveillance camera located on a peak just above the active volcanic vents of Stromboli island records the explosive activity of one of the few volcanoes on the world performing a persistent eruptive activity. From 2003, after one of the larger lava flow eruption of the last century, the video- surveillance system was enhanced with more stations having both thermal and visual cameras. The video-surveillance helps volcanologists to characterize the mild explosive activity of Stromboli named Strombolian and to distinguish between the frequent “ordinary” Strombolian explosions and the occasional “extraordinary” strong Strombolian explosions that periodically occur. A new class of extraordinary explosions was discovered filling the gap between the ordinary activity and the strong explosions named major explosions when the tephra fallout covers large areas on the volcano summit and paroxysmal ones when the bombs fall down to the inhabited area along the coast of the island. In order to quantify the trend of the ordinary Strombolian explosions and to understand the occurring of the extraordinary strong Strombolian explosions a computer assisted image analysis was developed to process the huge amount of thermal and visual images recorded in several years. The results of this complex analysis allow us to clarify the processes occurring in the upper plumbing system where the pockets/trains of bubbles coalesce and move into the active vent conduits producing the ordinary Strombolian activity, and to infer the process into the deeper part of the plumbing system where new magma supply and its evolution lead to the formation of the extraordinary strong Strombolian explosions

    The LAUE project for broadband gamma-ray focusing lenses

    Full text link
    We present the LAUE project devoted to develop an advanced technology for building a high focal length Laue lens for soft gamma--ray astronomy (80-600 keV). The final goal is to develop a focusing optics that can improve the current sensitivity in the above energy band by 2 orders of magnitude.Comment: 7 pages, 6 figures, presented at the SPIE conference on "Optics for EUV, X-ray, and Gamma-ray Astronomy". To be published in the Proceedings of SPIE, vol.8147, 201

    Development status of the LAUE project

    Full text link
    We present the status of LAUE, a project supported by the Italian Space Agency (ASI), and devoted to develop Laue lenses with long focal length (up to 100 meters), for hard X--/soft gamma--ray astronomy (80-600 keV). Thanks to their focusing capability, the design goal is to improve the sensitivity of the current instrumention in the above energy band by 2 orders of magnitude, down to a few times 10810^{-8} photons/(cm2^2 s keV).Comment: 9 pages, 9 figures, presented at the Space Telescopes and Instrumentation Symposium in Amsterdam, 2012: Ultraviolet to Gamma Ray Conference. Published in the Proceedings of the SPIE, Volume 8443, id. 84430B-84430B-9 (2012

    Synchronization in small-world systems

    Full text link
    We quantify the dynamical implications of the small-world phenomenon. We consider the generic synchronization of oscillator networks of arbitrary topology, and link the linear stability of the synchronous state to an algebraic condition of the Laplacian of the graph. We show numerically that the addition of random shortcuts produces improved network synchronizability. Further, we use a perturbation analysis to place the synchronization threshold in relation to the boundaries of the small-world region. Our results also show that small-worlds synchronize as efficiently as random graphs and hypercubes, and more so than standard constructive graphs

    Detectability of non-differentiable generalized synchrony

    Full text link
    Generalized synchronization of chaos is a type of cooperative behavior in directionally-coupled oscillators that is characterized by existence of stable and persistent functional dependence of response trajectories from the chaotic trajectory of driving oscillator. In many practical cases this function is non-differentiable and has a very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases, in which a differentiable synchronization function exists, are considered to make sense in practice. We show that this viewpoint is not always correct and the non-differentiable generalized synchrony can be revealed in many practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated numerically with a simple example of non-differentiable generalized synchronization.Comment: 8 pages, 8 figures, submitted to PR
    corecore