41 research outputs found

    Resolving climate impacts on fish stocks

    Get PDF
    Evidence is accumulating that the increase in CO2 is affecting the global climate, with far‐reaching implications for biological processes and ecosystem services. Recent studies suggest that there is evidence for a northward shift in the distributional range of fish species, but the mechanisms underlying these changes remain uncertain. Hence, it is largely unknown whether the observed distributional shifts are caused by a relocation of the spawning and feeding grounds, a change in the local survival of fish, or immigration into new habitats

    GRB 010222: A burst within a starburst

    Get PDF
    We present millimeter- and submillimeter-wavelength observations and near-infrared K-band imaging toward the bright gamma-ray burst GRB 010222. Over seven different epochs, a constant source was detected with an average flux density of 3.74 ± 0.53 mJy at 350 GHz and 1.05 ± 0.22 mJy at 250 GHz, giving a spectral index α = 3.78 ± 0.25 (where F ∝ vα). We rule out the possibility that this emission originated from the burst or its afterglow, and we conclude that it is due to a dusty, high-redshift starburst galaxy (SMM J14522 + 4301). We argue that the host galaxy of GRB 010222 is the most plausible counterpart of SMM J14522+4301, based in part on the centimeter detection of the host at the expected level. The optical/near-IR properties of the host galaxy of GRB 010222 suggest that it is a blue sub-L* galaxy, similar to other GRB host galaxies. This contrasts with the enormous far-infrared luminosity of this galaxy based on our submillimeter detection (LBol ≈ 4 × 10 12 L⊙). We suggest that this GRB host galaxy has a very high star formation rate, SFR ≈ 600 M⊙ yr -1, most of which is unseen at optical wavelengths

    Scale issues in soil moisture modelling: problems and prospects

    Get PDF
    Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore