146 research outputs found

    The Securing of the Premises Exception: A Search for the Proper Balance

    Get PDF
    This Recent Development argues that although an opinion endorsed by only two justices is not binding precedent, this portion of Segura represents an undesirable departure from the strict protections traditionally afforded a person\u27s privacy interest in the home and leaves lower courts confused about the constitutional limitations on seizures in the home. Part II examines prior Supreme Court opinions that have defined the parameters of permissible warrantless searches and seizures. Part III explores the circuit court opinions that have developed a securing of the premises exception. Part IV describes Chief Justice Burger\u27s analysis in Segura. Part V argues that the Chief Justice\u27s holding is not sup-ported by prior case law and unnecessarily erodes the privacy interest in the home. This Recent Development concludes by urging the Court to adopt an analytical framework, based on the circuit courts\u27 securing of the premises exception, that more carefully balances the public need for law enforcement against the privacy interest in the home

    Appointment time: Disability and neoliberal workfare temporalities

    Get PDF
    My primary interest in this article is to reveal the complexity of neoliberal temporalities on the lives of disabled people forced to participate in workfare regimes to maintain access to social security measures and programming. Through drawing upon some of the contemporary debates arising within the social study of time, this article explicates what Jessop refers to as the sovereignty of time that has emerged with the global adoption of neoliberal workfare regimes. It is argued that the central role of temporality within the globalizing project of neoliberal workfare and the positioning of disability within these global macro-structural processes requires the sociological imagination to return to both time as a theme and time as a methodology

    Genome modeling system: A knowledge management platform for genomics

    Get PDF
    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms

    Genetic Population Structure in the Antarctic Benthos: Insights from the Widespread Amphipod, Orchomenella franklini

    Get PDF
    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (FST = 0.086, RST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Flower proteome: changes in protein spectrum during the advanced stages of rose petal development

    Full text link
    Flowering is a unique and highly programmed process, but hardly anything is known about the developmentally regulated proteome changes in petals. Here, we employed proteomic technologies to study petal development in rose ( Rosa hybrida ). Using two-dimensional polyacrylamide gel electrophoresis, we generated stage-specific (closed bud, mature flower and flower at anthesis) petal protein maps with ca. 1,000 unique protein spots. Expression analyses of all resolved protein spots revealed that almost 30% of them were stage-specific, with ca. 90 protein spots for each stage. Most of the proteins exhibited differential expression during petal development, whereas only ca. 6% were constitutively expressed. Eighty-two of the resolved proteins were identified by mass spectrometry and annotated. Classification of the annotated proteins into functional groups revealed energy, cell rescue, unknown function (including novel sequences) and metabolism to be the largest classes, together comprising ca. 90% of all identified proteins. Interestingly, a large number of stress-related proteins were identified in developing petals. Analyses of the expression patterns of annotated proteins and their corresponding RNAs confirmed the importance of proteome characterization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47485/1/425_2005_Article_1512.pd

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×1034^{34} cm−2^{-2}s−1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    ATHENA detector proposal - a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity.This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
    • 

    corecore