11 research outputs found

    Spectroscopic Properties of pigment Li2-xZn1-xPrxTi3O8

    Full text link
    Inorganic compounds doped with rare earths (Ce3+, Pr3+, Nd3+, Sm3+, Eu 3+, Gd 3+, Tb 3+, Tm3+) have been used in various applications including light-emitting devices such as fluorescent lamps, cathode ray tubes, lasers and inorganic pigments. In this study, Pr3+ is doped in spinel Li2ZnTi3O8 system and synthesized by the polymeric precursor method, which is based on the process developed by the Pechini, and characterized by X-ray diffraction, UV-visible and CIE-L colorimetric measures * a * b *., in order to study the effect of doping and thermal treatment on its colorimetric properties. With three different samples of Pr3+ doping (0.01; 0.05 and 0.1 mol%) were prepared and calcined at 500°C, 600°C, 700°C, 800°C and 900°C for 4 h. The analysis of X-ray diffraction confirmed the formation of pure phases with spinel structure and average crystallite size of less than 46 nm. It was found that the colorimetric properties ranging from green to red, in accordance with the increase in the concentration of Pr3+ and thermal processing temperature

    Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    No full text
    Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN), and Bi2(Zn1/3Nb2/3)2O 7 (beta-BZN) have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN

    Synthesis and Structural Properties of Niobium Pentoxide Powders: A Comparative Study of the Growth Process

    No full text
    Powders Nb2 O5 were prepared by two different synthesis method, Sol-Gel and polymeric precursors (Pechini). In the Pechini method before adding the citric acid in the process, four different solutions were used to get the samples. For Sol-gel method, two different processes were also used in obtaining powders. The precursor was completely solubilized in ethanol and then hydrolyzed with ammonia and water. The calcination of the samples was between 500 and 750°C. The resulting powders were characterized by Scanning Electron Microscopy (SEM), Brunauer, Emmett and Teller (BET) surface area measurements, UV-visible and Raman spectroscopy. The formation of T−Nb2 O5 orthorhombic took place upon calcination at 7500C. Crystallite sizes were determined using the Scherrer method which resulted in an uniformed size of about 25 − 65nm. Ultraviolet-Visible diffuse reflectance spectroscopy indicated a variation in the optical band gap values (3.32-3.40 eV) in crystal growth process. The Raman vibrational modes indicate the presence of the orthorhombic phase of the material
    corecore