166 research outputs found

    An Estimate of the Soil Fertility Status of Graves and Todd Counties in Kentucky

    Get PDF
    Some concern has developed during recent years that fertilizer is being used by farmers on fields with residual levels of P and K high enough that such use is not justified as a means of increasing crop yields. This has been due to increased average soil test values for samples routinely submitted to college soil test laboratories. For this reason, studies were conducted in Graves and Todd Counties in Kentucky during the period September, 1978 to September, 1980, to determine if soil samples routinely submitted to college test laboratories do or do not accurately reflect the average soil fertility status of a county

    Zinc Fertilization of Corn in Kentucky

    Get PDF
    Of the agronomic crops, corn is especially sensitive to zinc deficiency. The major symptom of zinc deficiency in corn is broad white stripes in the leaves at or near the growing point in the early growth stages of the plant. It has been referred to as white bud disease because of the characteristic whitish area on one or both sides of the midrib near the base of new leaves. It can be seen as a new leaf unfolds from the whorl. Growth is stunted resulting in shorter than normal internodes. The pith of the stalk may become darkened at the base of the stalk (below ground level) and at the first leaf node. Sometimes the lower leaves become purple

    Isotope harvesting at heavy ion fragmentation facilities

    Get PDF
    Introduction The National Superconducting Cyclotron Laboratory (NSCL) is a national nuclear physics facility in which heavy ion beams are fragmented to produce exotic nuclei. In this process of fragmentation many nuclei are created, however, only one isotope is selected for experimentation. The remaining isotopes that are created go unused. The future upgrade of the NSCL to the Facility for Rare Isotope Beams (FRIB) will increase the incident energy of these heavy ion beams and amplify the current by three orders of magnitude. An aqueous beam dump will be created to collect the unused isotopes created in the process of fragmentation. Several of these isotopes are of interest for many applications including nuclear security, medical imaging, and therapy and are not currently available or are only available in very limited supply. Harvesting these isotopes from the aqueous beam dump could provide a consistent supply of these im-portant isotopes as an ancillary service to the existing experimental program. Material and Methods A liquid water target system was designed and tested to serve as a mock beam dump for exper-iments at the NSCL1. A 25 pnA 130 MeV/u 76Ge beam was fragmented using a 493 mg/cm2 thick beryllium production target. After fragmentation the beam was separated using the A1900 frag-ment separator2 set up for maximum 67Cu pro-duction using a 240 mg/cm2 aluminum wedge and a 2% momentum acceptance. The secondary beam was collected for four hours in the liquid water target system before being transferred to a collection vessel. Four additional four hour collections were made before finally shipping the five collections to Washington University and Hope College for chemical separation. Four of the five samples were separated using a two part separation scheme. First they were passed through and 3M Empore iminodiacetic acid functionalized chelation disk in a 1.25M ammonium acetate solution at pH 5. The flow through was collected and analyzed using an HPGe detector. Then 10mL of 6M HCl acid was passed through the chelation disk to remove the 2+ transition metals. The 10mL of 6M HCl acid was collected after passing through the disk and added to an anion-exchange column with 2.5 g AG1-X8 resin. The eluate was collected and then an additional 10mL of 6M HCl was passed through the column to remove the nickel. The 67Cu was then collected by passing 10mL of 0.5M HCl and the eluate was collected in 1mL fractions each analyzed by HPGe for 67Cu concentration and purity. The two highest 67Cu fractions were heated to dryness and reconstituted in 50 μL 0.1M ammonium acetate pH 5.5. 2 μL of 7.9 mg/mL NOTA-Bz-Trastuzumab was added to 45 μL of 67Cu and 3 μL 0.1M ammonium acetate pH 5.5. This solution was placed in a shaking incubator at 37 °C for twenty minutes and then analyzed by radio-instant thin layer chromatography in order to determine the per-cent of 67Cu bound to the antibody. Results and Conclusion 67Cu was collected into the liquid water target system with an average efficiency of 85 ± 5 %. The secondary beam was 73 % pure with the impurities, half-lives greater than 1 minute, listed in TABLE 1. Separation of 67Cu from the impurities resulted in an average recovery of 88 ± 3 % for a total recovery of 67Cu from the beam and separation of 75 ± 4 %. No detectable radioactive impurities were found in the final samples when analyzed using an HPGe detector. TABLE 2 shows the amount of 67Cu collected from the beam and the amount recovered decay corrected to end of bombardment. Labeling NOTA-Bz-Trastuzumab with 67Cu resulted in > 95 % radiochemical yield. Collection of the 73 % pure 67Cu beam in water and the resulting separation proved successful. These results demonstrate that radioisotopes can be collected from fragmented heavy ion beams and isolated in usable quantities and purity for many radiochemical applications. Further experimentation with an unpurified beam to better simulate conditions in the beam dump at the Facility for Rare Isotope Beams will be performed in the near future

    Exploring the Low-ZZ Shore of the Island of Inversion at N=19N = 19

    Get PDF
    The technique of invariant mass spectroscopy has been used to measure, for the first time, the ground state energy of neutron-unbound 28F,^{28}\textrm{F}, determined to be a resonance in the 27F+n^{27}\textrm{F} + n continuum at 220(50)2\underline{2}0 (\underline{5}0) keV. States in 28F^{28}\textrm{F} were populated by the reactions of a 62 MeV/u 29Ne^{29}\textrm{Ne} beam impinging on a 288 mg/cm2\textrm{mg/cm}^2 beryllium target. The measured 28F^{28}\textrm{F} ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pfpf shell intruder configurations play only a small role in the ground state structure of 28F^{28}\textrm{F} and establishing a low-ZZ boundary of the island of inversion for N=19 isotones.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Observation of Ground-State Two-Neutron Decay

    Get PDF
    Neutron decay spectroscopy has become a successful tool to explore nuclear properties of nuclei with the largest neutron-to-proton ratios. Resonances in nuclei located beyond the neutron dripline are accessible by kinematic reconstruction of the decay products. The development of two-neutron detection capabilities of the Modular Neutron Array (MoNA) at NSCL has opened up the possibility to search for unbound nuclei which decay by the emission of two neutrons. Specifically this exotic decay mode was observed in 16Be and 26O.Comment: To be published in Acta Physica Polonica

    The importance of initial-final state correlations for the formation of fragments in heavy ion collisions

    Get PDF
    Using quantum molecular dynamics simulations, we investigate the formation of fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV. After a comparison with existing data we investigate some observables relevant to tackle equilibration: dsigma/dErat, the double differential cross section dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very central reactions, none of our simulations gives evidence that the system passes through a state of equilibrium. Later, we address the production mechanisms and find that, whatever the energy, nucleons finally entrained in a fragment exhibit strong initial-final state correlations, in coordinate as well as in momentum space. At high energy those correlations resemble the ones obtained in the participant-spectator model. At low energy the correlations are equally strong, but more complicated; they are a consequence of the Pauli blocking of the nucleon-nucleon collisions, the geometry, and the excitation energy. Studying a second set of time-dependent variables (radii, densities,...), we investigate in details how those correlations survive the reaction especially in central reactions where the nucleons have to pass through the whole system. It appears that some fragments are made of nucleons which were initially correlated, whereas others are formed by nucleons scattered during the reaction into the vicinity of a group of previously correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in Physical Review

    Exploring the neutron dripline two neutrons at a time: The first observations of the 26O and 16Be ground state resonances

    Full text link
    The two-neutron unbound ground state resonances of 26^{26}O and 16^{16}Be were populated using one-proton knockout reactions from 27^{27}F and 17^{17}B beams. A coincidence measurement of 3-body system (fragment + n + n) allowed for the decay energy of the unbound nuclei to be reconstructed. A low energy resonance, << 200 keV, was observed for the first time in the 24^{24}O + n + n system and assigned to the ground state of 26^{26}O. The 16^{16}Be ground state resonance was observed at 1.35 MeV. The 3-body correlations of the 14^{14}Be + n + n system were compared to simulations of a phase-space, sequential, and dineutron decay. The strong correlations in the n-n system from the experimental data could only be reproduced by the dineutron decay simulation providing the first evidence for a dineutron-like decay.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Transfer/Breakup Modes in the 6He+209Bi Reaction Near and Below the Coulomb Barrier

    Full text link
    Reaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of the group suggests that it results primarily from a direct nuclear process. It is likely that this transfer/breakup channel is the doorway state that accounts for the previously observed large sub-barrier fusion enhancement in this system.Comment: 4 pages; 3 figure

    Alpha Particle Emission from6He + 209Bi

    Get PDF
    In a recent experiment, we have for the first time studied near-barrier and sub-barrier fusion of the exotic Borromean nucleus 6He with 209Bi and found that the sub-barrier fusion of this system is exceptionally enhanced, implying a 20% reduction in the nominal fusion barrier. It was suggested that this striking effect might he due to coupling to positive Q-value neutron transfer channels, leading to neutron flow and consequent neck formation between the projectile and target. The results of a new experiment using the radioactive nuclear beam facility at the University of Notre Dame to measure fast ⍺-particle emission from 6He + 209Bi are discussed. A exceptional1y strong transfer/breakup group was observed at near-barrier and sub-barrier energies; this is very likely to be the doorway state that explains the enhanced sub-barrier fusion. In a recent experiment, we have for the first time studied near-barrier and sub-barrier fusion of the exotic Borromean nucleus 6He with 209Bi and found that the sub-barrier fusion of this system is exceptionally enhanced, implying a 20% reduction in the nominal fusion barrier. It was suggested that this striking effect might he due to coupling to positive Q-value neutron transfer channels, leading to neutron flow and consequent neck formation between the projectile and target. The results of a new experiment using the radioactive nuclear beam facility at the University of Notre Dame to measure fast ⍺-particle emission from 6He + 209Bi are discussed. A exceptional1y strong transfer/breakup group was observed at near-barrier and sub-barrier energies; this is very likely to be the doorway state that explains the enhanced sub-barrier fusion
    corecore