2,454 research outputs found

    ERTS-1 Views the Great Lakes Area

    Get PDF
    ERTS-1 study of mesoscale atmospheric phenomena associated with Great Lake

    ERTS-1 views the Great Lakes

    Get PDF
    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency

    The Mariner 5 flight path and its determination from tracking data

    Get PDF
    Mariner 5 flight path and its determination from tracking dat

    Bridging the Gap:Parent and Child Perspectives of Living With Cerebral Visual Impairments

    Get PDF
    Cerebral Visual Impairment (CVI) is an umbrella term which includes abnormalities in visual acuity, or contrast sensitivity or colour; ocular motility; visual field and the conscious and unconscious filtering or processing of visual input. Children with CVI have specific needs and problems relating to their development from infancy to adulthood which can impact on their wellbeing. Recent research indicates the complexities of living with CVI but there remains limited information of the full impact of CVI on families’ everyday lives. The qualitative interviews reported here explored families’ experiences to discover the impact of CVI on all aspects of everyday life. Parents and children (aged 6–18) were invited to participate in semi-structured interviews, either face to face, by phone or video call between January 2018 and February 2019. Topics covered everyday practicalities of living with CVI, focusing on challenges and what worked well at school and home. Interviews were audio-recorded and subject to thematic analysis to look for patterns across the data. Twenty families took part in interviews, with eight children/young people within those families contributing interviews of their own. Four themes were developed from the interviews: (1) Assessment and understanding implications of CVI, (2) Education, (3) Family life, (4) Psychological wellbeing and quality of life. The interviews provide valuable insights into the impact of living with CVI and highlight the need for more awareness of the condition among professionals in both health and education settings

    Post-Turing Methodology: Breaking the Wall on the Way to Artificial General Intelligence

    Get PDF
    This article offers comprehensive criticism of the Turing test and develops quality criteria for new artificial general intelligence (AGI) assessment tests. It is shown that the prerequisites A. Turing drew upon when reducing personality and human consciousness to “suitable branches of thought” re-flected the engineering level of his time. In fact, the Turing “imitation game” employed only symbolic communication and ignored the physical world. This paper suggests that by restricting thinking ability to symbolic systems alone Turing unknowingly constructed “the wall” that excludes any possi-bility of transition from a complex observable phenomenon to an abstract image or concept. It is, therefore, sensible to factor in new requirements for AI (artificial intelligence) maturity assessment when approaching the Tu-ring test. Such AI must support all forms of communication with a human being, and it should be able to comprehend abstract images and specify con-cepts as well as participate in social practices

    Elastodynamics of radially inhomogeneous spherically anisotropic elastic materials in the Stroh formalism

    Full text link
    A method is presented for solving elastodynamic problems in radially inhomogeneous elastic materials with spherical anisotropy, i.e.\ materials such that cijkl=cijkl(r)c_{ijkl}= c_{ijkl}(r) in a spherical coordinate system r,θ,ϕ{r,\theta,\phi}. The time harmonic displacement field u(r,θ,ϕ)\mathbf{u}(r,\theta ,\phi) is expanded in a separation of variables form with dependence on θ,ϕ\theta,\phi described by vector spherical harmonics with rr-dependent amplitudes. It is proved that such separation of variables solution is generally possible only if the spherical anisotropy is restricted to transverse isotropy with the principal axis in the radial direction, in which case the amplitudes are determined by a first-order ordinary differential system. Restricted forms of the displacement field, such as u(r,θ)\mathbf{u}(r,\theta), admit this type of separation of variables solutions for certain lower material symmetries. These results extend the Stroh formalism of elastodynamics in rectangular and cylindrical systems to spherical coordinates.Comment: 15 page

    Accelerated lifetime testing and failure analysis of quartz based GaAs planar Schottky diodes

    Get PDF
    Accelerated lifetime tests have been performed on integrated planar GaAs Schottky diodes that were bonded to quartz substrates upside-down with a heat-cured epoxy. Results at 175°C, 200°C, and 240°C were analyzed using the Arrhenius-lognormal model. These tests predict a room temperature MTTF of 3x10^8 hours, a value that is comparable to conventional high-frequency planar Schottky diodes. This result demonstrates that the use of an appropriate epoxy to obtain GaAs devices on quartz substrates does not significantly reduce the lifetime of the devices

    Structure of the X-ray Emission from the Jet of 3C 273

    Get PDF
    We present images from five observations of the quasar 3C 273 with the Chandra X-ray Observatory. The jet has at least four distinct features which are not resolved in previous observations. The first knot in the jet (A1) is very bright in X-rays. Its X-ray spectrum is well fitted with a power law with alpha = 0.60 +/- 0.05. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of this knot from 1.647 GHz to 5 keV (over nine decades in energy) with alpha = 0.76 +/- 0.02, similar to the X-ray spectral slope. Thus, we place a lower limit on the total power radiated by this knot of 1.5e43 erg/s; substantially more power may be emitted in the hard X-ray and gamma-ray bands. Knot A2 is also detected and is somewhat blended with knot B1. Synchrotron emission may also explain the X-ray emission but a spectral bend is required near the optical band. For knots A1 and B1, the X-ray flux dominates the emitted energy. For the remaining optical knots (C through H), localized X-ray enhancements that might correspond to the optical features are not clearly resolved. The position angle of the jet ridge line follows the optical shape with distinct, aperiodic excursions of +/-1 deg from a median value of -138.0deg. Finally, we find X-ray emission from the ``inner jet'' between 5 and 10" from the core.Comment: 10 pages, 5 figures; accepted for publication in the Astrophysical Journal Letters. For the color image, see fig1.ps or http://space.mit.edu/~hermanm/papers/3c273/fig1.jp

    Byzantine Gathering in Networks

    Full text link
    This paper investigates an open problem introduced in [14]. Two or more mobile agents start from different nodes of a network and have to accomplish the task of gathering which consists in getting all together at the same node at the same time. An adversary chooses the initial nodes of the agents and assigns a different positive integer (called label) to each of them. Initially, each agent knows its label but does not know the labels of the other agents or their positions relative to its own. Agents move in synchronous rounds and can communicate with each other only when located at the same node. Up to f of the agents are Byzantine. A Byzantine agent can choose an arbitrary port when it moves, can convey arbitrary information to other agents and can change its label in every round, in particular by forging the label of another agent or by creating a completely new one. What is the minimum number M of good agents that guarantees deterministic gathering of all of them, with termination? We provide exact answers to this open problem by considering the case when the agents initially know the size of the network and the case when they do not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2. More precisely, for networks of known size, we design a deterministic algorithm gathering all good agents in any network provided that the number of good agents is at least f+1. For networks of unknown size, we also design a deterministic algorithm ensuring the gathering of all good agents in any network but provided that the number of good agents is at least f+2. Both of our algorithms are optimal in terms of required number of good agents, as each of them perfectly matches the respective lower bound on M shown in [14], which is of f+1 when the size of the network is known and of f+2 when it is unknown
    • …
    corecore