171 research outputs found

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology

    Full text link
    It has been recently suggested by Dvali and Vikman that the superluminal neutrino phenomenology of the OPERA experiment may be due to an environmental feature of the Earth, naturally yielding a long-range fifth force of gravitational origin whose coupling with the neutrino is set by the scale M_*, in units of reduced Planck mass. Its characteristic length lambda should not be smaller than one Earth's radius R_e, while its upper bound is expected to be slightly smaller than the Earth-Moon distance (60 R_e). We analytically work out some orbital effects of a Yukawa-type fifth force for a test particle moving in the modified field of a central body. Our results are quite general since they are not restricted to any particular size of lambda; moreover, they are valid for an arbitrary orbital configuration of the particle, i.e. for any value of its eccentricity ee. We find that the dimensionless strength coupling parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <= lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <= lambda = 3 10^10 - 4.5 10^10. Our results are neither necessarily limited to the superluminal OPERA scenario nor to the Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast with our bounds: they generally extend to any theoretical scenario implying a fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    A randomised controlled trial of the effects of albendazole in pregnancy on maternal responses to mycobacterial antigens and infant responses to bacille Calmette-Guérin (BCG) immunisation [ISRCTN32849447]

    Get PDF
    BACKGROUND: Maternal schistosomiasis and filariasis have been shown to influence infant responses to neonatal bacille Calmette-Guérin (BCG) immunisation but the effects of maternal hookworm, and of de-worming in pregnancy, are unknown. METHODS: In Entebbe, Uganda, we conducted a randomised, double-blind, placebo-controlled trial of a single dose of 400 mg of albendazole in the second trimester of pregnancy. Neonates received BCG. Interferon-gamma (IFN-γ) and interleukin (IL)-5 responses to a mycobacterial antigen (crude culture filtrate proteins (CFP) of Mycobacterium tuberculosis) were measured in a whole blood assay. We analysed results for binary variables using χ(2 )tests and logistic regression. We analysed continuous variables using Wilcoxon's tests. RESULTS: Maternal hookworm was associated with reduced maternal IFN-γ responses to CFP (adjusted odds ratio for IFN-γ > median response: 0.14 (95% confidence interval 0.02–0.83, p = 0.021). Conversely, maternal hookworm was associated with subsequent increased IFN-γ responses in their one-year-old infants (adjusted OR 17.65 (1.20–258.66; p = 0.013)). Maternal albendazole tended to reduce these effects. CONCLUSION: Untreated hookworm infection in pregnancy was associated with reduced maternal IFN-γ responses to mycobacterial antigens, but increased responses in their infants one year after BCG immunisation. The mechanisms of these effects, and their implications for protective immunity remain, to be determined

    AutoClickChem: Click Chemistry in Silico

    Get PDF
    Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu

    Plate-based diversity subset screening generation 2: An improved paradigm for high throughput screening of large compound files

    Get PDF
    High throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time-consuming and costly and the use of subsets as an efficient alternative to screening these large collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity, or biological target focus. Previously we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer

    Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Get PDF
    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems

    The immunology and genetics of resistance of sheep to Teladorsagia circumcincta

    Get PDF
    corecore