498 research outputs found
Quasirelativistic quasilocal finite wave-function collapse model
A Markovian wave function collapse model is presented where the
collapse-inducing operator, constructed from quantum fields, is a manifestly
covariant generalization of the mass density operator utilized in the
nonrelativistic Continuous Spontaneous Localization (CSL) wave function
collapse model. However, the model is not Lorentz invariant because two such
operators do not commute at spacelike separation, i.e., the time-ordering
operation in one Lorentz frame, the "preferred" frame, is not the time-ordering
operation in another frame. However, the characteristic spacelike distance over
which the commutator decays is the particle's Compton wavelength so, since the
commutator rapidly gets quite small, the model is "almost" relativistic. This
"QRCSL" model is completely finite: unlike previous, relativistic, models, it
has no (infinite) energy production from the vacuum state.
QRCSL calculations are given of the collapse rate for a single free particle
in a superposition of spatially separated packets, and of the energy production
rate for any number of free particles: these reduce to the CSL rates if the
particle's Compton wavelength is small compared to the model's distance
parameter. One motivation for QRCSL is the realization that previous
relativistic models entail excitation of nuclear states which exceeds that of
experiment, whereas QRCSL does not: an example is given involving quadrupole
excitation of the Ge nucleus.Comment: 10 pages, to be published in Phys. Rev.
How Stands Collapse II
I review ten problems associated with the dynamical wave function collapse
program, which were described in the first of these two papers. Five of these,
the \textit{interaction, preferred basis, trigger, symmetry} and
\textit{superluminal} problems, were discussed as resolved there. In this
volume in honor of Abner Shimony, I discuss the five remaining problems,
\textit{tails, conservation law, experimental, relativity, legitimization}.
Particular emphasis is given to the tails problem, first raised by Abner. The
discussion of legitimization contains a new argument, that the energy density
of the fluctuating field which causes collapse should exert a gravitational
force. This force can be repulsive, since this energy density can be negative.
Speculative illustrations of cosmological implications are offered.Comment: 37 page
Collapse Models
This is a review of formalisms and models (nonrelativistic and relativistic)
which modify Schrodinger's equation so that it describes wavefunction collapse
as a dynamical physical process.Comment: 40 pages, to be published in "Open Systems and Measurement in
Relativistic Quantum Theory," F. Petruccione and H. P. Breuer eds. (Springer
Verlag, 1999
Singularity-Free Electrodynamics for Point Charges and Dipoles: Classical Model for Electron Self-Energy and Spin
It is shown how point charges and point dipoles with finite self-energies can
be accomodated into classical electrodynamics. The key idea is the introduction
of constitutive relations for the electromagnetic vacuum, which actually
mirrors the physical reality of vacuum polarization. Our results reduce to
conventional electrodynamics for scales large compared to the classical
electron radius cm. A classical simulation for a
structureless electron is proposed, with the appropriate values of mass, spin
and magnetic moment.Comment: 3 page
Collapse models with non-white noises
We set up a general formalism for models of spontaneous wave function
collapse with dynamics represented by a stochastic differential equation driven
by general Gaussian noises, not necessarily white in time. In particular, we
show that the non-Schrodinger terms of the equation induce the collapse of the
wave function to one of the common eigenstates of the collapsing operators, and
that the collapse occurs with the correct quantum probabilities. We also
develop a perturbation expansion of the solution of the equation with respect
to the parameter which sets the strength of the collapse process; such an
approximation allows one to compute the leading order terms for the deviations
of the predictions of collapse models with respect to those of standard quantum
mechanics. This analysis shows that to leading order, the ``imaginary'' noise
trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J.
Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509
Hidden variable interpretation of spontaneous localization theory
The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a
theory in which wavepacket reduction is treated as a genuine physical process.
Here it is shown that the mathematical formalism of GRW can be given an
interpretation in terms of an evolving distribution of particles on
configuration space similar to Bohmian mechanics (BM). The GRW wavefunction
acts as a pilot wave for the set of particles. In addition, a continuous stream
of noisy information concerning the precise whereabouts of the particles must
be specified. Nonlinear filtering techniques are used to determine the dynamics
of the distribution of particles conditional on this noisy information and
consistency with the GRW wavefunction dynamics is demonstrated. Viewing this
development as a hybrid BM-GRW theory, it is argued that, besides helping to
clarify the relationship between the GRW theory and BM, its merits make it
worth considering in its own right.Comment: 13 page
The Hilbert space operator formalism within dynamical reduction models
Unlike standard quantum mechanics, dynamical reduction models assign no
particular a priori status to `measurement processes', `apparata', and
`observables', nor self-adjoint operators and positive operator valued measures
enter the postulates defining these models. In this paper, we show why and how
the Hilbert-space operator formalism, which standard quantum mechanics
postulates, can be derived from the fundamental evolution equation of dynamical
reduction models. Far from having any special ontological meaning, we show that
within the dynamical reduction context the operator formalism is just a compact
and convenient way to express the statistical properties of the outcomes of
experiments.Comment: 25 pages, RevTeX. Changes made and two figures adde
Quantum correlations in the temporal CHSH scenario
We consider a temporal version of the CHSH scenario using projective
measurements on a single quantum system. It is known that quantum correlations
in this scenario are fundamentally more general than correlations obtainable
with the assumptions of macroscopic realism and non-invasive measurements. In
this work, we also educe some fundamental limitations of these quantum
correlations. One result is that a set of correlators can appear in the
temporal CHSH scenario if and only if it can appear in the usual spatial CHSH
scenario. In particular, we derive the validity of the Tsirelson bound and the
impossibility of PR-box behavior. The strength of possible signaling also turns
out to be surprisingly limited, giving a maximal communication capacity of
approximately 0.32 bits. We also find a temporal version of Hardy's nonlocality
paradox with a maximal quantum value of 1/4.Comment: corrected versio
On classical models of spin
The reason for recalling this old paper is the ongoing discussion on the
attempts of circumventing certain assumptions leading to the Bell theorem
(Hess-Philipp, Accardi). If I correctly understand the intentions of these
Authors, the idea is to make use of the following logical loophole inherent in
the proof of the Bell theorem: Probabilities of counterfactual events A and A'
do not have to coincide with actually measured probabilities if measurements of
A and A' disturb each other, or for any other fundamental reason cannot be
performed simulaneously. It is generally believed that in the context of
classical probability theory (i.e. realistic hidden variables) probabilities of
counterfactual events can be identified with those of actually measured events.
In the paper I give an explicit counterexample to this belief. The "first
variation" on the Aerts model shows that counterfactual and actual problems
formulated for the same classical system may be unrelated. In the model the
first probability does not violate any classical inequality whereas the second
does. Pecularity of the Bell inequality is that on the basis of an in principle
unobservable probability one derives probabilities of jointly measurable random
variables, the fact additionally obscuring the logical meaning of the
construction. The existence of the loophole does not change the fact that I was
not able to construct a local model violating the inequality with all the other
loopholes eliminated.Comment: published as Found. Phys. Lett. 3 (1992) 24
- …