44 research outputs found

    Isometry of medial collateral ligament reconstruction

    Get PDF
    The purpose of this study was to determine the femoral and tibial fixation sites that would result in the most isometric MCL reconstruction technique. Seven cadaveric knees were used in this study. A navigation system was utilized to determine graft isometry continuously from 0Âș to 90Âș. Five points on the medial side of the femur and four on the tibia were tested. A graft positioned in the center of the MCL femoral attachment (FC) and attached in the center of the superficial MCL attachment on the tibia led to the best isometry (2.7 ± 1.1 mm). Movement of the origin superiorly only 4 mm (FS) led to graft excursion of greater than 10 mm (P < 0.01). MCL reconstruction performed with the origin of the MCL within the femoral footprint and the insertion in tibial footprint of the superficial MCL results in the least graft excursion when the knee is cycled between 0Âș and 90Âș. Although the MCL often heals without surgical intervention, surgical reconstruction is occasionally in Grade III MCL and combined ligamentous injuries to the knee. This study demonstrates the optimal position of the MCL reconstruction to reproduce the kinematics of the native knee

    Fixed-bearing Medial Unicompartmental Knee Arthroplasty Restores Neither the Medial Pivoting Behavior Nor the Ligament Forces of the Intact Knee in Passive Flexion

    Get PDF
    Medial unicompartmental knee arthroplasty (UKA) is an accepted treatment for isolated medial osteoarthritis. However, using an improper thickness for the tibial component may contribute to early failure of the prosthesis or disease progression in the unreplaced lateral compartment. Little is known of the effect of insert thickness on both knee kinematics and ligament forces. Therefore, a computational model of the tibiofemoral joint was used to determine how non-conforming, fixed bearing medial UKA affects tibiofemoral kinematics and tension in the medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) during passive knee flexion. Fixed bearing medial UKA could not maintain the medial pivoting that occurred in the intact knee from 0° to 30° of passive flexion. Abnormal anterior-posterior (AP) translations of the femoral condyles relative to the tibia delayed coupled internal tibial rotation, which occurred in the intact knee from 0° to 30° flexion, but occurred from 30° to 90° flexion following UKA. Increasing or decreasing tibial insert thickness following medial UKA also failed to restore the medial pivoting behavior of the intact knee despite modulating MCL and ACL forces. Reduced AP constraint in non-conforming medial UKA relative to the intact knee leads to abnormal condylar translations regardless of insert thickness even with intact cruciate and collateral ligaments. This finding suggests that the conformity of the medial compartment as driven by the medial meniscus and articular morphology plays an important role in controlling AP condylar translations in the intact tibiofemoral joint during passive flexion

    Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells

    Full text link

    ADVANCED IMAGING AND COMPUTER-ASSISTED SURGERY OF THE KNEE AND HIP Introduction

    No full text
    The 2008 American Academy of Orthopaedic Surgeons/Orthopaedic Research Society Advanced Imaging and Computer-Assisted Surgery of the Knee and Hip (AICKH) Research Symposium created a forum for the collaboration of experts from multiple disciplines to advance the state of the art in musculoskeletal imaging and computer-assisted surgery, particularly with regard to the knee and the hip. The symposium aimed to identify high-impact technologies and opportunities for applications of computer-assisted surgery and to facilitate the development, validation, and implementation of computer-assisted and advanced imaging techniques.National Institute of Arthritis and Musculoskeletal and Skin Diseases (Grant Number R13 AR054313-01

    What is the impact of patellofemoral joint degeneration and malalignment on patient-reported outcomes after lateral unicompartmental knee arthroplasty?

    No full text
    Aims: It remains controversial whether patellofemoral joint pathology is a contraindication to lateral unicompartmental knee arthroplasty (UKA). This study aimed to evaluate the effect of preoperative radiological degenerative changes and alignment on patient-reported outcome scores (PROMs) after lateral UKA. Secondarily, the influence of lateral UKA on the alignment of the patellofemoral joint was studied. Methods: A consecutive series of patients who underwent robotic arm-assisted fixed-bearing lateral UKA with at least two-year follow-up were retrospectively reviewed. Radiological evaluation was conducted to obtain a Kellgren Lawrence (KL) grade, an Altman score, and alignment measurements for each knee. Postoperative PROMs were assessed using the Kujala (Anterior Knee Pain Scale) score, Knee Injury and Osteoarthritis Outcome Score Joint Replacement (KOOS JR), and satisfaction levels. Results: A total of 140 knees (130 patients) were identified for analysis. At mean 4.1 years (2.0 to 8.5) follow-up, good to excellent Kujala scores were reported. The presence of mild to moderate preoperative patellofemoral joint osteoarthritis had no impact on these scores (KL grade 0 vs 1 to 3, p = 0.203; grade 0 to 1 vs 2 to 3, p = 0.674). Comparable scores were reported by patients with osteoarthritis (Altman score of = 2) evident on either the medial or lateral patellofemoral joint facet (medial, p = 0.600 and lateral, p = 0.950). Patients with abnormal patellar congruence and tilt angles (= 17° and = 14°, respectively) reported good to excellent Kujala scores. Furthermore, lateral UKA resulted in improvements to patellofemoral alignment. Conclusion: This is the first study demonstrating that mild to moderate preoperative radiological degenerative changes and malalignment of the patellofemoral joint are not associated with poor patient-reported outcomes at mid-term follow-up after lateral fixed-bearing UKA. Our data suggest that this may be explained by realignment of the patella and thereby redistribution of loads across the patellofemoral joint

    Navigated lateral unicompartmental knee arthroplasty - Technique and case report

    Get PDF
    AbstractLateral unicompartmental knee arthroplasty (UKA) outcomes have been inferior to those described after medial UKA. Inaccurate implant positioning and mechanical axis malalignment appear to be the most common technical errors. Rare studies or failure identification on lateral UKA are currently presented in the literature. We describe the utilization of computer-assisted lateral UKA placement for lateral knee osteoarthritis with a valgus malalignment of 10°. Navigation allows for a dynamic intraoperative visualisation of the mechanical axis, as well as for accurate component positioning and overall postoperative limb alignment. The systems allow the knee position to be captured with appropriate tension in extension and flexion prior to making definite cuts. Postoperatively, no instabilities occurred with a precise component placement. Navigation can be used in rare cases for lateral UKA

    A navigated 8-in-1 femoral cutting guide for total knee arthroplasty technical development and cadaveric evaluation.

    No full text
    International audienceThe goals of this study were to determine the precision of femoral component placement using a novel computes assisted surgery (CAS)-enabled 8-in-1 cutting guide in cadaver limbs and to identify errors generated at various stages of the cutting process. The cutting guide placement was on average within 1 degrees or millimeter of the target position in the varus/valgus, axial rotation, and cut height directions and within 2 degrees or millimeters, in all other directions. The difference between the desired femoral component and the impacted trial component position, defined as the execution error, averaged 0.9 degrees +/- 1.7 degrees of varus rotation, 0.8 +/- 2.3 mm of lateral translation, and 0.3 +/- 1 mm of proximal translation in the coronal plane (+/-SD). In the sagittal and axial planes, the execution error averaged 2.8 degrees +/- 2.5 degrees of flexion, 3.4 +/- 1.3 mm of anterior translation, and 0.7 degrees +/- 2.7 degrees of external rotation. CAS permits accurate placement of 8-in-1 jigs for valgus/varus, axial rotation, and cut height but is less accurate in the sagittal plane. Care should be taken when executing the cuts, which can affect precision in the sagittal plane more than actual positioning of the jig
    corecore