2,709 research outputs found

    Superconducting film with randomly magnetized dots: A realization of the 2D XY model with random phase shifts

    Full text link
    We consider a thin superconducting film with randomly magnetized dots on top of it. The dots produce a disordered pinning potential for vortices in the film. We show that for dots with permanent and random magnetization normal or parallel to the film surface, our system is an experimental realization of the two-dimensional XY model with random phase shifts. The low-temperature superconducting phase, that exists without magnetic dots, survives in the presence of magnetic dots for sufficiently small disorder.Comment: 5 pages, 1 figur

    Hierarchical Models for Independence Structures of Networks

    Get PDF
    We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erd\"os-R\'enyi and beta-models to create hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for parameter estimation as well as simulation studies for models with sparse dependency graphs.Comment: 19 pages, 7 figure

    Large Area Crop Inventory Experiment (LACIE). Intensive test site assessment report

    Get PDF
    There are no author-identified significant results in this report

    Dynamical replica analysis of disordered Ising spin systems on finitely connected random graphs

    Full text link
    We study the dynamics of macroscopic observables such as the magnetization and the energy per degree of freedom in Ising spin models on random graphs of finite connectivity, with random bonds and/or heterogeneous degree distributions. To do so we generalize existing implementations of dynamical replica theory and cavity field techniques to systems with strongly disordered and locally tree-like interactions. We illustrate our results via application to the dynamics of e.g. ±J\pm J spin-glasses on random graphs and of the overlap in finite connectivity Sourlas codes. All results are tested against Monte Carlo simulations.Comment: 4 pages, 14 .eps file

    Quantifying Self-Organization with Optimal Predictors

    Full text link
    Despite broad interest in self-organizing systems, there are few quantitative, experimentally-applicable criteria for self-organization. The existing criteria all give counter-intuitive results for important cases. In this Letter, we propose a new criterion, namely an internally-generated increase in the statistical complexity, the amount of information required for optimal prediction of the system's dynamics. We precisely define this complexity for spatially-extended dynamical systems, using the probabilistic ideas of mutual information and minimal sufficient statistics. This leads to a general method for predicting such systems, and a simple algorithm for estimating statistical complexity. The results of applying this algorithm to a class of models of excitable media (cyclic cellular automata) strongly support our proposal.Comment: Four pages, two color figure

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    Picturing classical and quantum Bayesian inference

    Full text link
    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `conditional density operators'. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture

    Scaling Analysis of Affinity Propagation

    Get PDF
    We analyze and exploit some scaling properties of the Affinity Propagation (AP) clustering algorithm proposed by Frey and Dueck (2007). First we observe that a divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2){\cal O}(N^2) to O(N(h+2)/(h+1)){\cal O}(N^{(h+2)/(h+1)}), for a data-set of size NN and a depth hh of the hierarchical strategy. For a data-set embedded in a dd-dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2d=2. In fact, for dd larger than 2 the relative loss in precision scales like N(2−d)/(h+1)dN^{(2-d)/(h+1)d}. Finally, under some conditions we observe that there is a value s∗s^* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for s<s∗s<s^*) from a coalescent one (for s>s∗s>s^*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position. From this observation, a strategy based on \AP can be defined to find out how many clusters are present in a given dataset.Comment: 28 pages, 14 figures, Inria research repor
    • …
    corecore