329 research outputs found

    Hsp90 governs dispersion and drug resistance of fungal biofilms

    Get PDF
    Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections

    Primary retroperitoneal mucinous cystadenoma with sarcoma-like mural nodule: A case report and review of the literature

    Get PDF
    Primary retroperitoneal cystadenomas are extremely rare. This is the first report in literature to describe a primary retroperitoneal cystadenoma with a sarcoma-like mural nodule. A 45-year-old woman complained of a left-sided abdominal mass. A computed tomography scan revealed a cystic mass with a mural nodule, which seemed to originate from the tail of the pancreas. At laparotomy the cyst was not adhered to the pancreas but localized retroperitoneally. Histologic examination showed a mucinous cystadenoma with only foci of borderline malignancy with a mural “sarcoma-like” nodule. In view of the surgical and histopathological findings, the mucinous cystadenoma was regarded as primary retroperitoneal. This case demonstrates that in the era of radiological preoperative refinement, pathological diagnosis remains of utmost importance, especially for rare cases

    Regulation of PTP1D mRNA by Peptide Growth Factors in the Human Endometrial Cell Line HEC-1-A

    Full text link
    Objective: To assess, in the human endometrial cell line HEC-1-A, the presence of protein tyrosine phosphatase 1D (PTDP1D) and the possible regulation of its mRNA expression by mitogens such as forskolin (an agent that increases intracellular cyclic adenosine monophosphate [cAMP] levels), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I). Methods: Cells were grown to confluence and maintained in serum-free media for 24 hours before treatment. Cells were exposed to forskolin, EGF, and IGF-I for increasing time periods (0, 1, 3, 6, and 24 hours), and PTP1D mRNA expression was determined by Northern blot analysis. In addition, cells were incubated with increasing doses of forskolin (final concentrations: 1, 5, 10, 20, and 30 μmol/L0 for 6 hours. Results: When treated with the various mitogens, cells increased their stimulation of PTP1D mRNA expression in a time- and dose-dependent fashion. Specifically, forskolin, EGF, and IGF-I induced maximal mRNA expression at 6, 3, and 6 hours, respectively. Expression induced by forskolin, EGF, and IGF-I was five, three, and six times control levels, respectively. At a dose of 10 μmol/L, forskolin induced PTP1D mRNA expression almost two times higher than control values. Conclusion: These data suggest that in human endometrial carcinomas, cAMP, EGF, and IGF-I may regulate the expression of PTP1D mRNA, which may, in turn, play a role in uncontrolled cell proliferation and neoplastic transformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68928/2/10.1177_107155769700400608.pd

    The Association Between Pre-pregnancy BMI and Preterm Delivery in a Diverse Southern California Population of Working Women

    Get PDF
    Whereas preterm birth has consistently been associated with low maternal pre-pregnancy weight, the relationship with high pre-pregnancy weight has been inconsistent. We quantified the pre-pregnancy BMI—preterm delivery (PTD) relationship using traditional BMI categories (underweight, normal weight, overweight and obese) as well as continuous BMI. Eligible women participated in California’s statewide prenatal screening program, worked during pregnancy, and delivered a live singleton birth in Southern California in 2002–2003. The final analytic sample included 354 cases delivering at <37 weeks, as identified by clinical estimate of gestational age from screening records, and 710 term normal-birthweight controls. Multivariable logistic regression models using categorical BMI levels and continuous BMI were compared. In categorical analyses, PTD was significantly associated with pre-pregnancy underweight only. Nonparametric local regression revealed a V-shaped relationship between continuous BMI and PTD, with minimum risk at the high end of normal, around 24 kg/m2. The odds ratio (OR) for PTD associated with low BMI within the normal range (19 kg/m2) was 2.84 (95%CI = 1.61–5.01); ORs for higher BMI in the overweight (29 kg/m2) and obese (34 kg/m2) ranges were 1.42 (95%CI = 1.10–1.84) and 2.01 (95% CI = 1.20–3.39) respectively, relative to 24 kg/m2). BMI categories obscured the preterm delivery risk associated with low-normal, overweight, and obese BMI. We found that higher BMI up to around 24 kg/m2 is increasingly protective of preterm delivery, beyond which a higher body mass index becomes detrimental. Current NHLBI/WHO BMI categories may be inadequate for identifying women at higher risk for PTD

    Tumor Necrosis Factor-α and Muc2 Mucin Play Major Roles in Disease Onset and Progression in Dextran Sodium Sulphate-Induced Colitis

    Get PDF
    The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC
    corecore