15 research outputs found
A refined Razumov-Stroganov conjecture II
We extend a previous conjecture [cond-mat/0407477] relating the
Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to
refined numbers of alternating sign matrices. By considering the O(1) loop
model on a semi-infinite cylinder with dislocations, we obtain the generating
function for alternating sign matrices with prescribed positions of 1's on
their top and bottom rows. This seems to indicate a deep correspondence between
observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf
macro
Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon
The raise and peel model of a one-dimensional fluctuating interface (model A)
is extended by considering one source (model B) or two sources (model C) at the
boundaries. The Hamiltonians describing the three processes have, in the
thermodynamic limit, spectra given by conformal field theory. The probability
of the different configurations in the stationary states of the three models
are not only related but have interesting combinatorial properties. We show
that by extending Pascal's triangle (which gives solutions to linear relations
in terms of integer numbers), to an hexagon, one obtains integer solutions of
bilinear relations. These solutions give not only the weights of the various
configurations in the three models but also give an insight to the connections
between the probability distributions in the stationary states of the three
models. Interestingly enough, Pascal's hexagon also gives solutions to a
Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few
references are adde
Refined Razumov-Stroganov conjectures for open boundaries
Recently it has been conjectured that the ground-state of a Markovian
Hamiltonian, with one boundary operator, acting in a link pattern space is
related to vertically and horizontally symmetric alternating-sign matrices
(equivalently fully-packed loop configurations (FPL) on a grid with special
boundaries).We extend this conjecture by introducing an arbitrary boundary
parameter. We show that the parameter dependent ground state is related to
refined vertically symmetric alternating-sign matrices i.e. with prescribed
configurations (respectively, prescribed FPL configurations) in the next to
central row.
We also conjecture a relation between the ground-state of a Markovian
Hamiltonian with two boundary operators and arbitrary coefficients and some
doubly refined (dependence on two parameters) FPL configurations. Our
conjectures might be useful in the study of ground-states of the O(1) and XXZ
models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure
Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices
The integrable loop model with mixed boundary conditions based on the
1-boundary extended Temperley--Lieb algebra with loop weight 1 is considered.
The corresponding qKZ equation is introduced and its minimal degree solution
described. As a result, the sum of the properly normalized components of the
ground state in size L is computed and shown to be equal to the number of
Horizontally and Vertically Symmetric Alternating Sign Matrices of size 2L+3. A
refined counting is also considered
Temperley-Lieb Stochastic Processes
We discuss one-dimensional stochastic processes defined through the
Temperley-Lieb algebra related to the Q=1 Potts model. For various boundary
conditions, we formulate a conjecture relating the probability distribution
which describes the stationary state, to the enumeration of a symmetry class of
alternating sign matrices, objects that have received much attention in
combinatorics.Comment: 9 pages LaTeX, 11 Postscript figures, minor change
Different facets of the raise and peel model
The raise and peel model is a one-dimensional stochastic model of a
fluctuating interface with nonlocal interactions. This is an interesting
physical model. It's phase diagram has a massive phase and a gapless phase with
varying critical exponents. At the phase transition point, the model exhibits
conformal invariance which is a space-time symmetry. Also at this point the
model has several other facets which are the connections to associative
algebras, two-dimensional fully packed loop models and combinatorics.Comment: 29 pages 17 figure
A_k Generalization of the O(1) Loop Model on a Cylinder: Affine Hecke Algebra, q-KZ Equation and the Sum Rule
We study the A_k generalized model of the O(1) loop model on a cylinder. The
affine Hecke algebra associated with the model is characterized by a vanishing
condition, the cylindric relation. We present two representations of the
algebra: the first one is the spin representation, and the other is in the
vector space of states of the A_k generalized model. A state of the model is a
natural generalization of a link pattern. We propose a new graphical way of
dealing with the Yang-Baxter equation and -symmetrizers by the use of the
rhombus tiling. The relation between two representations and the meaning of the
cylindric relations are clarified. The sum rule for this model is obtained by
solving the q-KZ equation at the Razumov-Stroganov point.Comment: 43 pages, 22 figures, LaTeX, (ver 2) Introduction rewritten and
Section 4.3 adde
Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain
The sums of components of the ground states of the O(1) loop model on a
cylinder or of the XXZ quantum spin chain at Delta=-1/2 (of size L) are
expressed in terms of combinatorial numbers. The methods include the
introduction of spectral parameters and the use of integrability, a mapping
from size L to L+1, and knot-theoretic skein relations.Comment: final version to be publishe
Polynomial solutions of qKZ equation and ground state of XXZ spin chain at Delta = -1/2
Integral formulae for polynomial solutions of the quantum
Knizhnik-Zamolodchikov equations associated with the R-matrix of the six-vertex
model are considered. It is proved that when the deformation parameter q is
equal to e^{+- 2 pi i/3} and the number of vertical lines of the lattice is
odd, the solution under consideration is an eigenvector of the inhomogeneous
transfer matrix of the six-vertex model. In the homogeneous limit it is a
ground state eigenvector of the antiferromagnetic XXZ spin chain with the
anisotropy parameter Delta equal to -1/2 and odd number of sites. The obtained
integral representations for the components of this eigenvector allow to prove
some conjectures on its properties formulated earlier. A new statement relating
the ground state components of XXZ spin chains and Temperley-Lieb loop models
is formulated and proved.Comment: v2: cosmetic changes, new section on refined TSSCPPs vs refined ASM
Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries
We propose new conjectures relating sum rules for the polynomial solution of
the qKZ equation with open (reflecting) boundaries as a function of the quantum
parameter and the -enumeration of Plane Partitions with specific
symmetries, with . We also find a conjectural relation \`a la
Razumov-Stroganov between the limit of the qKZ solution and refined
numbers of Totally Symmetric Self Complementary Plane Partitions.Comment: 27 pages, uses lanlmac, epsf and hyperbasics, minor revision