16 research outputs found

    Effects of Equine Assisted Therapy on Social and Undesirable Behaviors of Youths with Autistic Spectrum Disorder

    Get PDF
    The purpose of this study was to develop and investigate the effects of equine assisted therapy on social and undesirable behaviors of youths with autistic spectrum disorder (ASD). Six youths with autistic spectrum disorder aged 14-25 years were recruited by purposive sampling. They attended the 8 session program, twice a week. Each session took 80-90 minutes. The program included 4 activities: orientation/introduction, food preparation and feeding, grooming, and leading a horse. Subjects’ social and undesirable behaviors were assessed before and after the program using the following: 1) Recording forms for social behaviors and undesirable behaviors (Sung-U et.al, 2009) 2) The Scale of Independent Behavior-Revised (SIB-R) (Bruininks, 1996) using subtests for social interaction and communication skills, and a subtest for undesirable behaviors: frequency and severity of these behaviors. The Wilcoxon Signed-Rank test was used for data analysis, to compare units of measurement before and after the program. The results showed scores of SIB-R in subtests of language comprehension and language expression. The total scores were significantly increased (p0.05). Furthermore, the frequency scores of undesirable behaviors were not significantly decreased (P>0.05), but the severity score of these behaviors was significantly decreased (p0.05), but scores of undesirable behaviors were significantly decreased (p<0.05). The study concluded that a program of equine assisted therapy can encourage social behaviors and reduce undesirable behaviors in youth with autistic spectrum disorder

    Feasibility study of inertia sensor technology on the pelvic and trunk kinematics during horseback riding in children

    Get PDF
    Inertial sensors technology (IMU) has been utilized to determine kinematic data for some outdoor activities. Horseback riding (HR) is an alternative treatment that has been reported to be beneficial for children with cerebral palsy (CP). However, understanding the mechanism of improving postural control is unknown. The aim of this study was to investigate the feasible of IMU to determine pelvic and trunk kinematics during HR in children with CP and with typical development (TD). Twenty children (10 CP, 10 TD; age: 4-12 years) were recruited. The movement of the pelvis and trunk in children with CP and TD including angular displacement and velocity were measured by inertial measurement sensors during horseback riding. The result found that no differences were found for pelvis and trunk angular displacement or velocity. For children with CP, pelvis and trunk correlations were strong in angular displacement in the sagittal plane (r=0.65, p=0.04 for pelvis and trunk flexion-extension and r=0.75, p=0.01 for pelvis flexion-extension and trunk inclination) and in angular velocity in the frontal and horizontal plane (r=0.82, p=0.02 for lateral flexion and r=0.73, p=0.02 for rotation). For children with TD, pelvis and trunk correlations were strong only for angular velocity in the sagittal plane (r=67, p=0.03). In conclusion, it is possible to use the IMU technology to capture movement of children during HR. The motion parameters including pelvis and trunk angular displacement and velocity that can be used to detect a degree of functional impairments and monitor the progress of treatment

    Evaluation of serum chondroitin sulfate and hyaluronan: biomarkers for osteoarthritis in canine hip dysplasia

    Get PDF
    Hip dysplasia (HD) is one of the most important bone and joint diseases in dogs. Making the radiographic diagnosis is sometime possible when the disease has markedly progressed. Chondroitin sulfate (CS) and hyaluronan (HA) are the most important cartilage biomolecules that are elevated in the serum taken from dogs with osteoarthritis. The serum CS and HA can be detected by an ELISA technique, with using monoclonal antibodies against CS epitope 3B3 and WF6 and the HA chain as the primary antibodies. The aim of this study was to compare the levels of serum CS (both epitopes) and HA in non-HD and HD dogs. All 123 dogs were categorized into 2 groups. The non-HD group was composed of 98 healthy dogs, while the HD group was comprised of 25 HD dogs. Blood samples were collected for analyzing the serum CS and HA levels with using the ELISA technique. The results showed that the average serum level of the CS epitope WF6 in the HD group (2,594 ± 3,036.10 ng/ml) was significantly higher than that in the non-HD group (465 ± 208.97 ng/ml) (p < 0.01) while the epitope 3B3 in the HD group (105 ± 100.05 ng/ml) was significantly lower than that in the non-HD group (136 ± 142.03 ng/ml) (p < 0.05). The amount of serum HA in the HD group (134.74 ± 59.71 ng/ml) was lower than that in the non HD group (245.45 ± 97.84 ng/ml) (p < 0.05). The results indicate that the serum CS and HA levels might be used as biomarkers for osteoarthritis in HD dogs

    Equine chondrocyte metabolism under hypoxia

    No full text
    The avascular nature of articular cartilage limits oxygen supply within the tissue. Cartilage, therefore, is under physiological hypoxic conditions. Oxygenation gradients are estimated from 10% at the surface to 1% at the deepest layer. Nonetheless, chondrocytes have been reported to be able to survive and are well-adapted to such an environment. We hypothesised that low oxygen tensions favour chondrocyte metabolism based on their nature and literature reviews.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo.

    No full text
    Articular chondrocytes exist in an environment lacking in oxygen and nutrients due to the avascular nature of cartilage. The main source of metabolic energy is glucose, which is taken up by glucose transporters (GLUTs). In diseased joints, oxygen tensions and glucose availability alter as a result of inflammation and changes in vascularisation. Accordingly, in this study we examined the effects of hypoxia and the hypoxia mimetic cobalt chloride (CoCl(2)) on glucose transport in equine chondrocytes and compared expression of the hypoxia responsive GLUT1 gene in normal and diseased cartilage. Monolayers of equine chondrocytes were exposed to 20% O(2), 1% O(2), CoCl(2) (75 microM), or a combination of 1% O(2) and CoCl(2). Glucose uptake was measured using 2-deoxy-D-[2,6-(3)H] glucose. GLUT1 protein and mRNA expression were determined by FACS analysis and qPCR, respectively. GLUT1 mRNA expression in normal and diseased cartilage was analyzed using explants derived from normal, OA, and OCD cartilage. Chondrocytes under hypoxic conditions exhibited a significantly increased glucose uptake as well as upregulated GLUT1 protein expression. GLUT1 mRNA expression significantly increased in combined hypoxia-CoCl(2) treatment. Analysis of clinical samples indicated a significant reduction in GLUT1 mRNA in OA samples. In OCD samples GLUT1 expression also decreased but did not reach statistical significance. The increase in glucose uptake and GLUT1 expression under hypoxic conditions confirms that hypoxia alters the metabolic requirements of chondrocytes. The altered GLUT1 mRNA expression in diseased cartilage with significance in OA suggests that reduced GLUT1 may contribute to the failure of OA cartilage repair

    Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo.

    No full text
    Articular chondrocytes exist in an environment lacking in oxygen and nutrients due to the avascular nature of cartilage. The main source of metabolic energy is glucose, which is taken up by glucose transporters (GLUTs). In diseased joints, oxygen tensions and glucose availability alter as a result of inflammation and changes in vascularisation. Accordingly, in this study we examined the effects of hypoxia and the hypoxia mimetic cobalt chloride (CoCl(2)) on glucose transport in equine chondrocytes and compared expression of the hypoxia responsive GLUT1 gene in normal and diseased cartilage. Monolayers of equine chondrocytes were exposed to 20% O(2), 1% O(2), CoCl(2) (75 microM), or a combination of 1% O(2) and CoCl(2). Glucose uptake was measured using 2-deoxy-D-[2,6-(3)H] glucose. GLUT1 protein and mRNA expression were determined by FACS analysis and qPCR, respectively. GLUT1 mRNA expression in normal and diseased cartilage was analyzed using explants derived from normal, OA, and OCD cartilage. Chondrocytes under hypoxic conditions exhibited a significantly increased glucose uptake as well as upregulated GLUT1 protein expression. GLUT1 mRNA expression significantly increased in combined hypoxia-CoCl(2) treatment. Analysis of clinical samples indicated a significant reduction in GLUT1 mRNA in OA samples. In OCD samples GLUT1 expression also decreased but did not reach statistical significance. The increase in glucose uptake and GLUT1 expression under hypoxic conditions confirms that hypoxia alters the metabolic requirements of chondrocytes. The altered GLUT1 mRNA expression in diseased cartilage with significance in OA suggests that reduced GLUT1 may contribute to the failure of OA cartilage repair
    corecore