209 research outputs found

    A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations

    Get PDF
    The commercial market for technologies to monitor and improve personal health and sports performance is ever expanding. A wide range of smart watches, bands, garments, and patches with embedded sensors, small portable devices and mobile applications now exist to record and provide users with feedback on many different physical performance variables. These variables include cardiorespiratory function, movement patterns, sweat analysis, tissue oxygenation, sleep, emotional state, and changes in cognitive function following concussion. In this review, we have summarized the features and evaluated the characteristics of a cross-section of technologies for health and sports performance according to what the technology is claimed to do, whether it has been validated and is reliable, and if it is suitable for general consumer use. Consumers who are choosing new technology should consider whether it (1) produces desirable (or non-desirable) outcomes, (2) has been developed based on real-world need, and (3) has been tested and proven effective in applied studies in different settings. Among the technologies included in this review, more than half have not been validated through independent research. Only 5% of the technologies have been formally validated. Around 10% of technologies have been developed for and used in research. The value of such technologies for consumer use is debatable, however, because they may require extra time to set up and interpret the data they produce. Looking to the future, the rapidly expanding market of health and sports performance technology has much to offer consumers. To create a competitive advantage, companies producing health and performance technologies should consult with consumers to identify real-world need, and invest in research to prove the effectiveness of their products. To get the best value, consumers should carefully select such products, not only based on their personal needs, but also according to the strength of supporting evidence and effectiveness of the products

    Effect of carbohydrate feeding on the bone metabolic response to running

    Get PDF
    Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO·kg body mass-1·h-1) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (VO2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. β-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (β-CTX: P=0.028; P1NP: P=0.021; IL-6: P=0.036), although there was no difference in the short-term response (β-CTX: P=0.856; P1NP: P=0.721; IL-6: P=0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the β-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover

    γδ T cell response to prolonged heavy endurance exercise

    Get PDF
    The focus of this study was to assess exercise-induced alterations in circulating γδ T cell subpopulations and memory phenotypes after a prolonged heavy-intensity exercise bout. Ten highly-trained endurance cyclists (mean ± SEM: age 24.0 ± 1.3 years; height 1.81 ± 0.02 m; body mass 73.3 ± 1.8 kg; peak oxygen uptake 60.7 ± 1.5 mL.kg-1.min-1) performed 2 h of cycling exercise at 90% of the second ventilatory threshold. Blood samples were collected before exercise, immediately post-exercise, 1 h, 2 h, 4 h, and 6 h post-exercise. Flow cytometry was used to examine γδ T cell subsets, memory phenotypes and receptor expression. A significant decrease in cell concentration was observed in total γδ T cells and the δ2 subset from pre-exercise to 1 h, 2 h, and 4 h post-exercise. Further analysis of the δ2 subset revealed a significant decrease from pre-exercise to 1 h, 2 h, and 4 h post-exercise in naive δ2 cells, and a significant decrease from pre-exercise to 1 h and 2 h post-exercise in central memory δ2 cells. A significant decrease was observed in γδ T cells expressing CD11ahigh, CD62Lhigh and CD94+ from pre-exercise to 1 h, 2 h, and 4 h post-exercise. Furthermore, a significant decrease was observed from pre-exercise to 1 h post-exercise in CD62Llow and CD94- γδ T cells. These results suggest an exercise-stress-induced redistribution of γδ T cells from the circulation with greater propensity for antigen stimulation, tissue and lymph node homing potential for a duration of 4 h after the cessation of exercise

    The effect of cryotherapy on the vascular regeneration following closed soft tissue trauma

    Get PDF
    INTRODUCTION Icing (cryotherapy) is being widely used for the treatment of closed soft tissue trauma (CSTT), such as those resulting from sport injuries. It is believed that cryotherapy induces vasoconstriction and through this mechanism reduces inflammation [1]. However, the impact of this technique on the healing of impaired vasculature and muscle injuries following trauma remains controversial. Recent evidence suggests that the muscle regeneration is delayed after cryotherapy [2]. Consequently, we aimed to investigate the effect of cryotherapy on the vascular morphology following CSTT using an experimental model in rats by contrast-enhanced micro-CT imaging. METHODS Fifty four rats were divided into three main groups: control (no injury, n=6), sham (CSTT but no icing treatment, n=24) and icing (CSTT, treated with one session of ice block massaged directly on the injured muscle for 20 minutes, n=24). The CSTT was induced to the left thigh (Biceps Femoris) of anaesthetised rats (Male, Wistar) to create a standardized and reproducible vascular and muscle injury using an impact device [3]. Following trauma, animals were euthanized after 1, 3, 7, and 28 days healing time (n=6 for each time point). For a three-dimensional vascular morphological assessment, the blood vessels of euthanised rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. Both hind-limbs were dissected, and then the injured and non-injured limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) and total volume of the perfused blood vessels (TVV) was calculated. More detailed morphological parameters such as vessel volume (VV), diameter (VD), spacing (VSp), number (VN) and connectivity (VConn) were quantified through high resolution (6 µm), micro-CT-scanned biopsy samples (diameter: 8mm) taken directly from the region of the injured muscles. The biopsies were then analysed histologically to confirm the results derived from contrast-enhanced micro-CT imaging. RESULTS AND DISCUSSION The TVV was significantly higher in the injured legs compared to the non-injured legs at day 1 and 7 in the sham group and at day 28 in both sham and icing groups. The biopsies from the injured legs of the icing group showed a significant reduction in VV, VN, VD, VConn and an increase in VSp compared to those in the sham and control groups at days 1, 3 and 7, post injury. While the injured legs of the sham group exhibited a decrease in VN and VConn 28 days post trauma, indicating a return to the original values prior to trauma, these parameters had increased in the icing group (Figure 1). Also, at day 1 post injury, VV and VD of the injured legs were significantly higher in the sham group compared to the icing group, which may be attributed to the effect of vasoconstriction induced by icing. Further histomorphological evaluation of day 1 post injury, indicated that although cryotherapy significantly reduced the injury size and influx of inflammatory cells, including macrophages and neutrophils, a delay in vascular and muscle fiber regeneration was found at later time points confirming other reports from the literature [2]. CONCLUSIONS We have demonstrated using micro-CT imaging that the vascular morphology changes after CSTT, and that its recovery is affected by therapeutic modalities such as icing. This may be useful for the development of future clinical monitoring, diagnosis and treatment of CSTT. While icing reduces the swelling after trauma, our results suggest that it may delay the recovery of the vasculature in the injured tissue

    Effect of ageing and exercise training on myokine expression responses to acute exercise

    Get PDF
    Age-related muscle loss is a major contributor to falls, fraility and mortality. It has been widely suggested that chronic, age-related inflammation contributes to the gradual loss of skeletal muscle mass that occurs with ageing. Indeed, ageing is associated with elevations in a number of circulating inflammatory proteins, many of which have detrimental effects on skeletal muscle growth and protein balance. Exercise training has been shown to reduce chronic inflammation and, therefore, may represent an appropriate means to reduce age-related inflammation and counteract sarcopenia. Yet few studies have evaluated the effect of aging on skeletal muscle expression of inflammatory proteins and the effect of acute and repeated exercise on these factors. The aim of the current study was to determine the effect of 12 weeks of resistance exercise training on the levels of myokines within skeletal muscle, both at rest and following an acute bout of exercise and to examine how these responses may vary in young and older subjects, thus evaluating the potential for exercise to reduce age-related muscle inflammation. Six healthy young (aged 18-25 years) and 8 healthy older men (aged 60-75 years) completed 12 weeks of resistance exercise training. Muscle biopsies were collected before and 2 h after an acute exercise bout at the beginning and the end of the 12 week training period. Muscle tissue was analyzed for the expression of key inflammatory (MCP-1, IL-8, IL-6 and TNF-α) and anti-inflammatory cytokines (IL-10, IL-13 and IL-4) via bead-based multiplex analysis. Acute exercise increased the expression of inflammatory myokines, while anti-inflammatory myokines remained unchanged. In contrast to the hypothesis for this study, neither age nor training had a significant effect on the expression of myokines within skeletal muscle either in the resting state or 2 hours following exercise. However, older individuals displayed an increased inflammatory response to exercise prior to training when compared to younger individuals. Twelve weeks of resistance exercise training appeared to normalize this difference. Given the variability in myokine levels between individuals and the small subject number in the current study, further research is required to confirm this findin

    Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications

    Get PDF
    Blood flow-restricted exercise is currently used as a low-intensity time-efficient approach to reap many of the benefits of typical high-intensity training. Evidence continues to lend support to the notion that even highly trained individuals, such as athletes, still benefit from this mode of training. Both resistance and endurance exercise may be combined with blood flow restriction to provide a spectrum of adaptations in skeletal muscle, spanning from myofibrillar to mitochondrial adjustments. Such diverse adaptations would benefit both muscular strength and endurance qualities concurrently, which are demanded in athletic performance, most notably in team sports. Moreover, recent work indicates that when traditional high-load resistance training is supplemented with low-load, blood flow-restricted exercise, either in the same session or as a separate training block in a periodised programme, a synergistic and complementary effect on training adaptations may occur. Transient reductions in mechanical loading of tissues afforded by low-load, blood flow-restricted exercise may also serve a purpose during de-loading, tapering or rehabilitation of musculoskeletal injury. This narrative review aims to expand on the current scientific and practical understanding of how blood flow restriction methods may be applied by coaches and practitioners to enhance current athletic development models.publishedVersionPaid open acces

    Chronic psychological stress was not ameliorated by omega-3 eicosapentaenoic acid (EPA)

    Get PDF
    Background: Chronic psychological stress and mental health disorders are endemic in Western culture where population dietary insufficiencies of omega-3 fatty acids (n-3FA) from seafood have been observed. Objective: This study was designed to test for a causal relationship between one of the most active components of fish oil, eicosapentaenoic acid (EPA), and chronic psychological stress. Method: A randomized double-blind, placebo-controlled clinical trial with parallel-assignment to two groups was designed (Trial Id: ACTRN12610000404022). The interventions were four EPA-rich fish oil capsules per day, delivering 2.2 g/d EPA (and 0.44 g/d DHA), or identical placebo (low-phenolic olive oil capsules with 5% fish oil to aid blinding). The primary outcome was the between-group difference on the Perceived Stress Scale (PSS-10) after 12 weeks supplementation. An a priori power analysis determined that group sizes of 43 would provide 80% power to detect a significant between-group difference of 12.5%, at α = 0.05. Ninety community members (64 females, 26 males) reporting chronic work stress were recruited via public advertising in northern NSW, Australia. Results: At baseline the omega-3 index (EPA + DHA as % to total fatty acids in red blood cell membranes) was 5.2% in both groups (SD = 1.6% control group; 1.8% active group). After supplementation this remained stable at 5.3% (SD = 1.6%) for the control group but increased to 8.9% (SD = 1.5%) for the active group, demonstrating successful incorporation of EPA into cells. Intention-to-treat (ITT) analysis found no significant between-group differences in PSS outcome scores post-intervention (b = 1.21, p = 0.30) after adjusting for sex (b = 2.36, p = 0.079), baseline PSS (b = 0.42, p = 0.001) and baseline logEPA [b = 1.41, p = 0.185; F(3, 86) = 8.47, p \u3c 0.01, n = 89, R-square = 0.243]. Discussion: Treatment increased cell membrane EPA but, contrary to the hypothesis, there was no effect on perceived stress. Limitations included an imbalance of gender in groups after randomization (68% of the males were in the placebo group). While we found no significant interaction between sex and group on the outcome after adjusting for baseline PSS, larger studies with groups stratified for gender may be required to further confirm these findings. Conclusion: This study demonstrated that 2. 2 g/day of EPA for 12 weeks did not reduce chronic psychological stress

    Ibuprofen ingestion does not affect markers of post-exercise muscle inflammation

    Get PDF
    PURPOSE: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d(-1)) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. RESULTS: The resistance exercise protocol stimulated a significant increase in the number of CD66b(+) and MPO(+) cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. CONCLUSION: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery

    Un "simposio di sapienza e affetto"

    Get PDF
    Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise
    • …
    corecore