180 research outputs found

    Novel thermophilic cellulolytic isolates belonging to the phylum Chloroflexi

    Full text link
    Current biofuel technologies utilize valuable foodstuffs, such as corn kernels and cane sugar, as sources of easily metabolized sugars. Microbes are used to ferment these sugars into bioethanol, a first-generation biofuel. However, in order to avoid diverting foodstuffs from the food supply, the development of second-generation biofuels technology is necessary. Second-generation biofuels are produced by converting structurally complex lignocellulosic biomass, such as agricultural and municipal wastes, to fermentable sugars or directly to biofuels. The major technological hurdle limiting the mass production of second-generation biofuels is the difficulty in efficiently converting structurally complex lignocellulosic materials to fermentable sugars or directly to biofuels. The discovery of novel thermophilic microorganisms and enzymes that have high activities or broad substrate ranges on plant polymers addresses this challenge

    From Local Velocities to Microwave Background

    Get PDF
    The mass density field as extracted from peculiar velocities in our cosmological neighborhood is mapped back in time to the CMB in two ways. First, the density power spectrum (PkP_k) is translated into a temperature angular power spectrum of sub-degree resolution (ClC_l) and compared to observations. Second, the local density field is translated into a temperature map in a patch on the last-scattering surface of a distant observer. A likelihood analysis of the Mark III peculiar velocity data have constrained the range of parameters for PkP_k within the family of COBE-normalized CDM models (Zaroubi et al 1996), favoring a slight tilt in the initial spectrum, n<1n<1. The corresponding range of ClC_l's is plotted against current observations, indicating that the CMB data can tighten the constraints further: only models with ``small'' tilt (n0.9n\sim 0.9) and ``high'' baryonic content (Ωb0.1\Omega_b \sim 0.1) could survive the two data sets simultaneously. The local mass density field that has been recovered from the velocities via a Wiener method is convolved with a Boltzmann calculation to recover 1010' resolution temperature maps as viewed from different directions. The extent of the CMB patch and the amplitude of fluctuations depend on the choice of cosmological parameters, e.g., the local 100\hmpc sphere corresponds to 9090' to 3030' at the CMB for Ω\Omega between 1 and 0 respectively. The phases of the temperature map are correlated with those of the density field, contrary to the contribution of the Sachs-Wolfe effect alone. This correlation suggests the possibility of an inverse reconstruction of the underlying density field from CMB data with interesting theoretical implications.Comment: 16 pages, 6 figures. Submitted to Ap.

    A Spatial and temporal analysis of microbial communities in Great Boiling Spring, Nevada, U.S.A.

    Full text link
    Great Boiling Spring (GBS) is a large, circumneutral, long residence time geothermal spring in the US Great Basin. Twelve samples were taken from four different sediment sites and the planktonic community in the bulk water of GBS on up to four different dates. Microbial community composition and diversity was assessed by using a barcoded, improved universal primer set targeting the V8 portion of the 16S rRNA gene and PCR. Over 200,000 products were sequenced using the Roche 454 GS FLX Titanium System. Sediment and planktonic microbial communities were distinct with very little overlap, regardless of the sampling location or temperature. Planktonic communities were extremely uneven and were dominated by a single phylotype related to Thermocrinis in the Aquificales. Benthic microbial communities grouped according to temperature and sampling location. Two locations, Site A (80-87°C) and Site B (79°C), were predominantly composed of the crenarchaeal class Thermoprotei, the novel archaeal lineage pSL4, and the novel bacterial lineage GAL35. Populations of the ammonia oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” comprised 5-15% of all samples when Site A was cooler than normal (80°C) and at cooler sites throughout the spring (76-62°C). At cooler temperature sites (76-62°C), the phylum-level diversity and evenness were significantly higher, and bacteria made up a significantly higher percentage of the population. To our knowledge, this is the most detailed study of the spatial and temporal variation in any geothermal spring. The study underscores the distinctness of planktonic and benthic communities and the importance of temperature in driving the spatial variation of microbial phylotypes throughout the mineralogically homogenous source pool. 8

    Lensing-Induced Structure of Submillimeter Sources: Implications for the Microwave Background

    Get PDF
    We consider the effect of lensing by galaxy clusters on the angular distribution of submillimeter wavelength objects. While lensing does not change the total flux and number counts of submillimeter sources, it can affect the number counts and fluxes of flux-limited samples. Therefore imposing a flux cut on point sources not only reduces the overall Poisson noise, but imprints the correlations between lensing clusters on the unresolved flux distribution. Using a simple model, we quantify the lensing anisotropy induced in flux-limited samples and compare this to Poisson noise. We find that while the level of induced anisotropies on the scale of the cluster angular correlation length is comparable to Poisson noise for a slowly evolving cluster model, it is negligible for more realistic models of cluster evolution. Thus the removal of point sources is not expected to induce measurable structure in the microwave or far-infrared backgrounds.Comment: 22 pages, 9 figures, accepted to Astrophysical Journa

    On Breaking Cosmic Degeneracy

    Get PDF
    It has been argued that the power spectrum of the anisotropies in the Cosmic Microwave Background (CMB) may be effectively degenerate, namely that the observable spectrum does not determine a unique set of cosmological parameters. We describe the physical origin of this degeneracy and show that at small angular scales it is broken by gravitational lensing: effectively degenerate spectra become distinguishable at l ~ 3000 because lensing causes their damping tails to fall at different rates with increasing l. This effect also helps in distinguishing nearly degenerate power spectra such as those of mixed dark matter models. Forthcoming interferometer experiments should provide the means of measuringotherwise degenerate parameters at the 5-25% level.Comment: 7 pages, LaTeX, two figures, to be published in ApJ Letter

    Observational Constraints on Open Inflation Models

    Full text link
    We discuss observational constraints on models of open inflation. Current data from large-scale structure and the cosmic microwave background prefer models with blue spectra and/or Omega_0 >= 0.3--0.5. Models with minimal anisotropy at large angles are strongly preferred.Comment: 4 pages, RevTeX, with 2 postscript figures included. Second Figure correcte

    A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing

    Get PDF
    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world

    Associations among osteocalcin, leptin and metabolic health in children ages 9-13 years in the United States

    Get PDF
    BACKGROUND: This study aimed to investigate the relationships among osteocalcin, leptin and metabolic health outcomes in children ages 9-13 years. METHODS: This was a cross-sectional analysis of baseline data from 161 boys and 157 girls (ages 9-13 years) who previously participated in a double-blinded randomized placebo controlled trial of vitamin D supplementation. Relationships among fasting serum total osteocalcin (tOC), undercarboxylated osteocalcin (ucOC), leptin, and metabolic health outcomes were analyzed. RESULTS: Approximately 52% of study participants were obese based on percent body fat cutoffs (>25% for boys and >32% for girls) and about 5% had fasting serum glucose within the prediabetic range (i.e. 100 to 125 mg/dL). Serum tOC was not correlated with leptin, glucose, insulin, HOMA-IR, or HOMA-β after adjusting for percent body fat. However, serum ucOC negatively correlated with leptin (partial r = -0.16; p = 0.04) and glucose (partial r = -0.16; p = 0.04) after adjustment for percent body fat. Leptin was a positive predictor of insulin, glucose, HOMA-IR, and HOMA-β after adjusting for age, sex and percent body fat (all p < 0.001). CONCLUSIONS: These data depict an inverse relationship between leptin and various metabolic health outcomes in children. However, the notion that tOC or ucOC link fat with energy metabolism in healthy children was not supported

    Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9-13 Years

    Get PDF
    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed
    corecore