185 research outputs found

    The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma.

    Get PDF
    Prostate cancer is the most commonly diagnosed malignancy and second leading cause of cancer death among men in the United States. In recent years, several new agents, including cancer immunotherapies, have been approved or are currently being investigated in late-stage clinical trials for the management of advanced prostate cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel, including physicians, nurses, and patient advocates, to develop consensus recommendations for the clinical application of immunotherapy for prostate cancer patients. To do so, a systematic literature search was performed to identify high-impact papers from 2006 until 2014 and was further supplemented with literature provided by the panel. Results from the consensus panel voting and discussion as well as the literature review were used to rate supporting evidence and generate recommendations for the use of immunotherapy in prostate cancer patients. Sipuleucel-T, an autologous dendritic cell vaccine, is the first and currently only immunotherapeutic agent approved for the clinical management of metastatic castrate resistant prostate cancer (mCRPC). The consensus panel utilized this model to discuss immunotherapy in the treatment of prostate cancer, issues related to patient selection, monitoring of patients during and post treatment, and sequence/combination with other anti-cancer treatments. Potential immunotherapies emerging from late-stage clinical trials are also discussed. As immunotherapy evolves as a therapeutic option for the treatment of prostate cancer, these recommendations will be updated accordingly

    A randomized trial to assess the impact of opinion leader endorsed evidence summaries on the use of secondary prevention strategies in patients with coronary artery disease: the ESP-CAD trial protocol [NCT00175240]

    Get PDF
    BACKGROUND: Although numerous therapies have been shown to be beneficial in the prevention of myocardial infarction and/or death in patients with coronary disease, these therapies are under-used and this gap contributes to sub-optimal patient outcomes. To increase the uptake of proven efficacious therapies in patients with coronary disease, we designed a multifaceted quality improvement intervention employing patient-specific reminders delivered at the point-of-care, with one-page treatment guidelines endorsed by local opinion leaders ("Local Opinion Leader Statement"). This trial is designed to evaluate the impact of these Local Opinion Leader Statements on the practices of primary care physicians caring for patients with coronary disease. In order to isolate the effects of the messenger (the local opinion leader) from the message, we will also test an identical quality improvement intervention that is not signed by a local opinion leader ("Unsigned Evidence Statement") in this trial. METHODS: Randomized trial testing three different interventions in patients with coronary disease: (1) usual care versus (2) Local Opinion Leader Statement versus (3) Unsigned Evidence Statement. Patients diagnosed with coronary artery disease after cardiac catheterization (but without acute coronary syndromes) will be randomly allocated to one of the three interventions by cluster randomization (at the level of their primary care physician), if they are not on optimal statin therapy at baseline. The primary outcome is the proportion of patients demonstrating improvement in their statin management in the first six months post-catheterization. Secondary outcomes include examinations of the use of ACE inhibitors, anti-platelet agents, beta-blockers, non-statin lipid lowering drugs, and provision of smoking cessation advice in the first six months post-catheterization in the three treatment arms. Although randomization will be clustered at the level of the primary care physician, the design effect is anticipated to be negligible and the unit of analysis will be the patient. DISCUSSION: If either the Local Opinion Leader Statement or the Unsigned Evidence Statement improves secondary prevention in patients with coronary disease, they can be easily modified and applied in other communities and for other target conditions

    Replication and single-cycle delivery of SARS-CoV-2 replicons

    Get PDF
    Molecular virology tools are critical for basic studies of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. There remains a need for experimental systems that do not rely on viruses capable of spread that could potentially be used in lower containment settings. Here, we develop spike-deleted SARS-CoV-2 self-replicating RNAs using a yeast-based reverse genetics system. These non-infectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate Replicon Delivery Particles (RDPs) for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and characterizing viral variants

    2022 Roadmap on integrated quantum photonics

    Get PDF
    AbstractIntegrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering
    corecore