3 research outputs found

    Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate

    Get PDF
    The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm<sup>2</sup>. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm<sup>2</sup>) and liquid state (54 mJ/cm<sup>2</sup>), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes
    corecore