54 research outputs found

    Avispas “Chaqueta Amarilla,” Avispones y Avispas de Papel

    Get PDF
    Las avispas “chaqueta amarilla” o vespula (“yellowjackets”), avispones (“hornets”) y avispas de papel (“paper wasps”) son avispas sociales estrechamente relacionadas que son comĂșnmente encontradas en Utah

    N95 vs Half-face Respirator Wear in Surgical Trainees: Physiologic and Psychological Effects of Prolonged Use

    Get PDF
    Objectives: As specialists of the upper airway, otolaryngologists are at high risk for COVID-19 transmission. N95 and half-face respirator (HFR) masks are commonly worn, each with advantages in functionality and comfort. In this study, physiologic and psychological parameters of prolonged N95 vs HFR wear were compared. Study Design: Prospective crossover cohort study. Setting: Single academic tertiary care hospital. Methods: A prospective crossover cohort study was performed. Healthy otolaryngology trainees and medical students (N = 23) participated and wore N95 and HFR masks continuously for 3 hours each on separate days. Various measures were analyzed: vitals, spirometry variables, scores on the State-Trait Anxiety Inventory and HIT-6 (Headache Impact Test–6), distress, and “difficulty being understood.” Results: The average age was 26.3 years (SD, 3.42). There were no significant differences in vital signs and spirometry variables between N95 and HFR wear. N95 wear was associated with decreases in oxygen saturation of approximately 1.09% more than with HFRs (95% CI, 0.105-2.077). State-Trait Anxiety Inventory scores increased more with HFR wear when compared with mean changes with N95 wear (95% CI, 1.350-8.741). There were no significant differences in HIT-6 scores or distress levels between masks. The proportions of participants reporting difficulty being understood was significantly higher with HFRs. Conclusions: Oxygen saturation decreases with prolonged N95 wear, but anxiety and difficulty being understood are greater with HFR wear. Although HFRs have less resistance to gas exchange, N95 respirators may produce less anxiety and distress in clinical situations. Further studies are warranted to evaluate the clinical significance of these differences. Level of Evidence: 2

    JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

    Full text link
    Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 ÎŒ\rm{\mu}m. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 ÎŒ\rm{\mu}m, and detailed atmospheric modeling and retrievals identify this feature as SiO2_2(s) (quartz) clouds. The SiO2_2(s) clouds model is preferred at 3.5-4.2σ\sigma versus a cloud-free model and at 2.6σ\sigma versus a generic aerosol prescription. We find the SiO2_2(s) clouds are comprised of small ∌0.01{\sim}0.01 ÎŒ\rm{\mu}m particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2_2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ

    An Extremely Massive Quiescent Galaxy at z = 3.493: Evidence of Insufficiently Rapid Quenching Mechanisms in Theoretical Models

    Get PDF
    We present spectra of the most massive quiescent galaxy yet spectroscopically confirmed at z > 3, verified via the detection of Balmer absorption features in the H- A nd K-bands of Keck/MOSFIRE. The spectra confirm a galaxy with no significant ongoing star formation, consistent with the lack of rest-frame UV flux and overall photometric spectral energy distribution. With a stellar mass of 3.1-0.2-+0.1× 10-11\,M at z = 3.493, this galaxy is nearly three times more massive than the highest redshift spectroscopically confirmed absorption-line-identified galaxy known. The star formation history of this quiescent galaxy implies that it formed >1000 M o yr-1 for almost 0.5 Gyr beginning at z ∌ 7.2, strongly suggestive that it is the descendant of massive dusty star-forming galaxies at 5 < z < 7 recently observed with ALMA. While galaxies with similarly extreme stellar masses are reproduced in some simulations at early times, such a lack of ongoing star formation is not seen there. This suggests the need for a quenching process that either starts earlier or is more rapid than that currently prescribed, challenging our current understanding of how ultra-massive galaxies form and evolve in the early universe. © 2020. The American Astronomical Society. All rights reserved.IndexaciĂłn: Scopu

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    • 

    corecore