593 research outputs found

    Test Infrastructure for Address-Event-Representation Communications

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. To develop and test AER based systems it is convenient to have a set of instruments that would allow to: generate AER streams, monitor the output produced by neural chips and modify the spike stream produced by an emitting chip to adapt it to the requirements of the receiving elements. In this paper we present a set of tools that implement these functions developed in the CAVIAR EU project.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Bubble-laden thermals in supersaturated water

    Get PDF
    Bubble-laden thermals provide a formidable gas transport mechanism responsible, for instance, for the explosive foaming-up process during the beer tapping prank, or the infamous gas eruption of Lake Nyos in 1986. In this work we investigate experimentally the growth and motion of laser-induced turbulent thermals in a carbonated water solution with surfactants. One of the novelties of this study is that we are able to quantify with high temporal resolution the rate at which the gas volume contained in the bubbles grows. After an initial transient stage, the gas bubble and entrained liquid volumes of the thermal both grow as a cubic power of time. The buoyancy generation rate is well explained by the mass transfer scaling expected for individual bubbles. In contrast, the thermal rise velocity does not adhere to any particular scaling law. These facts lie in qualitative agreement with a phenomenological model, based on classical models for turbulent thermals, that takes into account buoyancy generation.We acknowledge the support of the Spanish Ministry of Economy and Competitiveness through grants DPI2017-88201-C3-3-R and DPI2018-102829-REDT, partly funded through European Funds. This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands

    Some Topics on the Physics of Bubble Dynamics in Beer

    Get PDF
    Besides being the favorite beverage of a large percentage of the population, a glass or bottle of beer is a test bench for a myriad of phenomena involving mass transfer, bubble-laden flows, natural convection, and many more topics of interest in Physical Chemistry. This paper summarizes some representative physical problems related to bubbles that occur in beer containers, pointing out their practical importance for the industry of beverage processing, as well as their potential connection to other processes occurring in natural sciences. More specifically, this paper describes the physics behind the sudden foam explosion occurring after a beer bottled is tapped on its mouth, gushing, buoyancy-induced motions in beer glasses, and bubble growth in stout beers.We acknowledge the support of the Spanish Ministry of Economy and Competitiveness through grants DPI2014-59292-C3-1-P and DPI2015-71901-REDT, partly funded through European Funds. We are also grateful to Jaume Lluis Tartera, from the beer company Mahou-San Miguel, for pointing out to the authors some very interesting aspects of the role of foam in beer

    FPGA Implementations Comparison of Neuro-cortical Inspired Convolution Processors for Spiking Systems

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided in frames and each one has to be completely processed before the next frame arrives. Recently a new method for computing convolutions based on the neuro-inspired philosophy of spiking systems (Address-Event-Representation systems, AER) is achieving high performances. In this paper we present two FPGA implementations of AERbased convolution processors that are able to work with 64x64 images and programmable kernels of up to 11x11 elements. The main difference is the use of RAM for integrators in one solution and the absence of integrators in the second solution that is based on mapping operations. The maximum equivalent operation rate is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Junta de Andalucía P06-TIC-0141

    On the AER Convolution Processors for FPGA

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided into frames and each one has to be completely processed before the next frame arrives in order to warranty the real-time. A spike-based philosophy for computing convolutions based on the neuro-inspired Address-Event- Representation (AER) is achieving high performances. In this paper we present two FPGA implementations of AER-based convolution processors for relatively small Xilinx FPGAs (Spartan-II 200 and Spartan-3 400), which process 64x64 images with 11x11 convolution kernels. The maximum equivalent operation rate that can be reached is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    A LVDS Serial AER Link

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The event information is transferred using a high speed digital parallel bus (typically 16 bits and 20ns-40ns per event). This paper presents a testing platform for AER systems that allows to analyse a LVDS Serial AER link. The interface allows up to 0.7 Gbps (~40Mev/s, 16 bits/ev). The eye diagram ensures that the platform could support 1.2 Gbps.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    Image convolution using a probabilistic mapper on USB-AER board

    Get PDF
    In this demo we propose a method for computing real time convolution on AER images. For that we use signed events. The AER events produced on an AER retina or an image/video to AER conversor, are processed using a probabilistic multi event mapper that produces more than one event for each incoming event according to an assigned probability. Kernel convolution size are limited by mapping tables size (on board RAM) and AER bus bandwidth. On reconstruction signed events needs to be simplified (subtracted) to get final convolved image. For that two different methods are proposed.Comisión Interministerial de Ciencia y Tecnología TIC-2006-08164-C03-02Junta de Andalucía P06-TIC-0141

    Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice

    Get PDF
    Pomace olive oil, an olive oil sub-product, is a promising source of bioactive triterpenoids such as oleanolic acid and maslinic acid. Considering the vascular actions of pomace olive oil and the potential effects of the isolated oleanolic acid on metabolic complications of obesity, this study investigates for the first time the dietary intervention with a pomace olive oil with high concentrations of the triterpenic acids (POCTA), oleanolic and maslinic acid, during diet-induced obesity in mice. The results demonstrate that obese mice, when switched to a POCTA-diet for 10 weeks, show a substantial reduction of body weight, insulin resistance, adipose tissue inflammation, and particularly, improvement of vascular function despite high caloric intake. This study reveals the potential of a functional food based on pomace olive oil and its triterpenic fraction against obesity progression. Our data also contribute to understanding the health-promoting effects attributable to the Mediterranean dietSpanish Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER) (Grants SAF2017-82813-C3-3-R and PCI2018-092997/AEI to R.R.-R.

    Shaky life of a water drop in an anise oil-rich environment

    Get PDF
    This paper is associated with a video winner of a 2018 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original video is available online at the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2018.GFM.V0054This paper is associated with a video winner of a 2018 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion.We acknowledge the support of the Spanish FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación through Grants No. DPI2014-59292-C3-1-P, No. DPI2015-71901-REDT, and No. DPI2017-88201-C3-3-R

    Two Hardware Implementations of the Exhaustive Synthetic AER Generation Method

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. In [6], [5] various software methods for synthetic AER generation were presented. But in neuro-inspired research field, hardware methods are needed to generate AER from laptop computers. In this paper two real time implementations of the exhaustive method, proposed in [6], [5], are presented. These implementations can transmit, through AER bus, images stored in a computer using USB-AER board developed by our RTCAR group for the CAVIAR EU project.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0
    corecore