
On the AER Convolution Processors for FPGA
A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodríguez, A. Jiménez, M. Rivas, G. Jiménez, A. Civit

Robotic and Technology of Computers group. University of Seville.

 Av. Reina Mercedes s/n, 41012-Sevilla, SPAIN. alinares@atc.us.es

Abstract— Image convolution operations in digital computer

systems are usually very expensive operations in terms of

resource consumption (processor resources and processing time)

for an efficient Real-Time application. In these scenarios the

visual information is divided into frames and each one has to be

completely processed before the next frame arrives in order to

warranty the real-time. A spike-based philosophy for computing

convolutions based on the neuro-inspired Address-Event-

Representation (AER) is achieving high performances. In this

paper we present two FPGA implementations of AER-based

convolution processors for relatively small Xilinx FPGAs

(Spartan-II 200 and Spartan-3 400), which process 64x64 images

with 11x11 convolution kernels. The maximum equivalent

operation rate that can be reached is 163.51 MOPS for 11x11

kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock.

Formulations, hardware architecture, operation examples and

performance comparison with frame-based convolution

processors are presented and discussed.

I. INTRODUCTION

Digital vision systems process sequences of frames from
conventional video sources, like cameras. For performing
complex object recognition algorithms, sequences of
computational operations must be performed for each frame.
The computational power and speed required makes it difficult
to develop a real-time autonomous system. But brains perform
powerful and fast vision processing using millions of small
and slow cells working in parallel in a totally different way.
Vision sensing and object recognition in brains is not
processed frame by frame; it is processed in a continuous way,
spike by spike, in the brain-cortex.

The visual cortex is composed by a set of layers ([1][2]),
starting from the retina. The processing starts when the retina
captures the information. In recent years significant progress
has been made in the study of the processing implemented in
the visual cortex. Many artificial systems that implement bio-
inspired software models use biological-like processing that
outperform more conventionally engineered machines [3][4].
However, these systems generally run at extremely low speeds
because the models are implemented as software programs.
For real-time solutions direct hardware implementations of
these models are required. A growing number of research
groups world-wide are implementing some of these
computational principles onto real-time spiking hardware
through the development and exploitation of the so-called
AER (Address Event Representation) technology. AER was
proposed by the Mead lab in 1991 [5] for communicating

between neuromorphic chips with spikes. Each time a cell on
a sender device generates a spike, it transmit a digital word
representing a code or address for that pixel, using an external
inter-chip digital bus (the AER bus). In the receiver the spikes
are directed to the pixels whose code or address was on the
bus. In this way, cells with the same address in the emitter and
receiver chips are virtually connected by streams of spikes.
Arbitration circuits ensure that cells do not access the bus
simultaneously. Usually, these AER circuits are built using
self-timed asynchronous logic [6]. Several works are already
present in the literature regarding to visual processing filters.
Serrano et al. presented chip-processor able to implement
image convolution filters based on spikes that work at very
high performance parameters compared to traditional digital
frame-based convolution processors [15][16]. Another
approach for solving frame-based convolutions with higher
performances are the ConvNets [17][18], based on cellular
neural networks, that are able to achieve a theoretical
sustained 4 GOPS for 7x7 kernel sizes.

In this paper we present two FPGA implementations of
neuro-cortical inspired convolution processors. These circuits
have been developed studying a previous work for VLSI chip
[12], but with several differences: (a) Instead of using the
Integrate and Fire (IF) neuron, we have used RAM based
integrators in one solution and any integrator in the second
implementation; (b) instead of using arbitrated rate-code
output we produce Poisson-like; (c) instead of 31x31 kernel
sizes, we have limited to 11x11 because of FPGA resources
limitations in one case and 3x3 in the second case; (d) instead
of 32x32 expandable image sizes between chips, we have
implemented 64x64 image sizes but no expandable.

II. CONVOLUTIONS WITH SPIKES.

A. Description

Complex filtering processing based on AER convolution
chips already exists. These chips are based on Integrate and
Fire neurons [12]. Each time an event is received, a kernel of
convolution is copied in the neighbourhood of the targeted IF
neuron. When a neuron reaches its threshold, a spike is
produced and the neuron is reset. Bi-dimensional image
convolution is defined mathematically by the following
equation, being K an nxm kernel matrix of the convolution, X
the input image and Y the convolved image.

∑ ∑
−= −=

++⋅=→∀

2/

2/

2/

2/
,

),(),(),(
n

na

m

mb
ji

jbiaXbaKjiY

This work has been supported by Spanish government grants

SAMANTA II (TEC2006-11730-C03-02) and VULCANO (TEC2009-

10639-C04-02), and Andalussian regional government grant BrainSystems

(P06-TIC-01417) .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Each convolved image pixel Y(i,j) is defined by the
corresponding input pixel X(i,j) and weighted adjacent pixels,
scaled by K coefficients. Therefore an input pixel X(i,j)
contributes to the value of the output pixel Y(i,j) and their
neighbours, multiplied by the corresponding kernel
coefficients K.

For implementing convolutions using spikes let’s suppose
Y a matrix of integrators (capacitors for analog circuits or
registers or RAM cells for digital circuits) to store the result of
applying a kernel of convolution to an input image X that is
coded into a stream of events through the AER protocol. Each
pixel X(i,j) represents a gray value G in the original image.
Let’s suppose that in the AER bus will be represented, for a
fixed period of time, an amount of events P·G, proportional to
the gray level of the pixel. For each event coming from the
continuous visual source (e.g. an AER retina or a synthetic
AER generator), the neighbourhood of the corresponding pixel
address in Y is modified by adding the convolution kernel K,
stored in a RAM memory and previously configured. Thus,
each element of Y is modified when an event with the address
(i,j) arrives with the following equation:

)dim(,,
2
,

2
,

2
,

2

,),,(),(),(

KMN
MM

b
NN

a

babaKbjaiYbjaiY

=





−∈





−∈

∀+++=++

Once all the events of the pixel X(i,j) have been received
and calculated, the integrator value of the corresponding

address Y(i,j) has accumulated X(i+a,j+b) ba,∀ , (the gray

values) times the value of the kernel, so the multiplication
operation has been reached. The output of the convolution
operation, at this point is stored in the matrix of integrators Y.
This result can be sent out in several ways: (a) scanning all the
integrators values and sending out an analog or digital signal.
Each integrator or register is reset after reading. The system is
converted into a frame-based output, so the neuro-inspired
nature is lost. (b) Based on IF neuron, when an integrator
reaches a threshold a spike is produced and the corresponding
AER event is produced. The system is totally spike-based, but
the output cannot follow a Poisson distribution due to the IF
neuron [8]. Every time a spike is produced by a neuron, this is
reset. This solution is used by analog convolution chips [13].
(c) Generate synthetically a stream of spikes. Having the result
in the Y matrix, a method for synthetic AER generation can be
used to warranty the Poisson distribution of spikes [10].

In [12] the convolution chip is able to receive positive and
negative events to process signed kernels and therefore, it is
also able to produce signed output events. This is done by
duplicating the number of integrators, having a positive and a
negative integrator per cell. If the positive integrator reaches
the zero and additional negative values arrive to the cell, the
negative integrator starts to work. The output event produced
will be signed depending on the integrator used to produce
that event.

B. FPGA Implementation I: Integrators on RAM

Figure 1 shows the block diagram of the first architecture.
It is composed basically by two devices: a FPGA and a
microcontroller. The FPGA is in charge of the AER-based
convolution processor and the microcontroller is responsible

of the PC interface for configuring all the parameters (Kernel
matrix, kernel size, forgetting period and forgetting quantity).
The circuit in the FPGA can be divided into four parallel
blocks:

• AER event reception and processing. The AER input

traffic is managed by the “AER input” block. Each received

event (i,j) is used to address the Y matrix (64x64 cells).

Centered on (i,j), the kernel is copied in the Y matrix. The

neighborhood of the cell (i,j) will modify their values by

adding the corresponding kernel value. Therefore, Y matrix is

always up-to-date with the convolution result. Y matrix is

implemented using a block of dual-port 8-bit RAM in the

FPGA. The 11x11kernel is stored in another 8-bit block of

one-port RAM. Each kernel value is in the range of -127 to

127. When the kernel is added to Y the result is limited

between 0 and 255, so no signed events are implemented.

• Forgetting mechanism. For high AER input bandwidth

and / or weighted kernels, maximum cell value (255) could be

reached quickly and thus, next events are not processed. Let’s

call this situation saturation effect. For this reason, to avoid

errors, a configurable forgetting circuitry is in the

architecture. The forgetting is based on a programmable

counter that accesses the Y matrix periodically (let’s call

forgetting period) in order to decrease its values by a constant

(let’s call forgetting quantity). Forgetting period and quantity

are configured through USB.

Figure 1. Bottom: block diagram AER RAM-based convolution processor.
Top: source images (left column), MATLAB simulation results (center
column) and FPGA AER convolution output histograms (rigth column).

• Poisson like AER output. Y matrix always has the result of

the convolution. Thanks to the forgetting mechanism, this

matrix can be captured at any time with a valid convolved

result. To warranty the Poisson distribution of output events,

















−

−

−

=

10010

10010

10010

K

the Y matrix is accessed by a Random AER synthetic

generator [8][9].

• Configuration. The controller is in charge of receiving

kernel size and values, forgetting period and amount to

forget. An SPI interface connects a USB microcontroller and

the FPGA. A computer with MATLAB controls the system.
The system has been developed in hardware in a Spartan 3

400 FPGA. The testing scenario consists on a USB-AER
working as Uniform AER generator [9], which output is
connected to an AER-Robot configured as the AER
convolution processor; and its output is connected to a second
USB-AER working as an AER datalogger.
Figure 1 (top, left column) shows an example bitmap and

its negative version. These bitmaps are converted into AER
using an AER Uniform generator to feed the convolution
processor. When applying a kernel for edge detection (ON to
OFF, see figure 2, matrix K), opposite responses are expected.
Bottom row shows the reconstructed normalized histograms
for 512Kevents obtained with the AER datalogger [11], from
convolution processor output. The middle column images are
the result of applying a MATLAB conv2() function.

III. SPIKE-BASED CONVOLUTIONS BY COMPLEX MAPPINGS.

A. Description.

In this section we explain how to implement convolutions
using a probabilistic multi-event mapper [10][14]. This
mapper is able to send several different output events per each
input event and each output event can be repeated several
times. Let’s suppose that M is the number of elements of a
convolution kernel K. Each of these mapped events has
associated a repetition factor (R) and a probability (P) of being
sent or not. For each input event (Ini), up to dim(K) output
events are generated. Thus a projective field of events is
generated for each input event. From the receiver point of
view, the number of events for the same address depends on
the probability and repetition factor of the input events in the
neighbourhood. This neighbourhood is as big as the kernel
size. Therefore, the number of events for a fixed output
address follows the expression:

)dim(,

··_

,,,

,

,

,,,

,

,

KbaPRK

KInPRInOutNev

bababa

ba

ba

bababa

ba

bai

∈∀⋅=

⇒=⋅= ∑∑

Therefore, to calculate the repetition and probability, the
following equation can be applied:

 
i

i
iii R

K
PandKR == ;

For example, for a desired kernel coefficient Ki=1.2,
repetition factor is Ri=2 and probability is Pi=0.6.

B. Implementation II: Probabilistic Mapper.

An AER mapper uses the identification of each emitter
neuron that is present in the AER bus to address its mapping
table. Then, a list of mapped addresses is sent replacing the
original event in the AER communication. Each mapped event
is stored in the mapping table with two parameters: a
repetitious factor (R) and an output probability (P). A FSM is
in charge of sending the list of events if the probability

function allows it. This FSM will repeat each mapped event
according to R (see figure 2, top). An internal LFSR (Left
Feedback Shift Register) is used to generate pseudorandom
numbers which are compared with the probability in order to
decide if the mapped event is sent. In this way a Poisson
output distribution is obtained [8][9].

Figure 2. Top: Probabilistic Multi-event mapper block diagram. Right: (a)
source image, (b) K1 convolution histogram, (c) K2 postive output traffic

and negative traffic, (d) abs(positve+negative) K2 histogram.

With this mapper, sophisticated operations can be
performed to events during transmission time, like small
kernel convolutions, for example. As the probability can be
modified per each mapped event, it is possible to implement a
one-to-dim(K) mapping, where each of these dim(K) events
can be modulated with P and R along time, as expressed in the
previous section. Thus, this architecture is able to increase or
reduce the frequency of events of a neighbourhood per each
input event according to a kernel of convolutions. In the other
hand, mapped events can be positive and negative, so signed
events appears in the output AER bus. A receiver must take
the average between positive and negative events per each
address for completing the convolution operation.

This architecture has been tested in a USB-AER board that
is composed by a Spartan II FPGA and 2Mb of SRAM
memory (mapping table) [10]. It is able to process a one-to-
one mapping in 120ns, and a one-to-M effective mapping in
(60+M·60)ns. If a mapped event is not sent the time
consumption decreases in 20ns.

Figure 2 bottom shows two examples. A source bitmap
(64x64) (a) is converted to AER format by the Uniform
method [9]. (b) is the normalized histogram of collecting AER
traffic for 100ms, after applying a simple 2x2 kernel
convolution K1. The resulting image should be the initial one
with soft-edges. An added random noise, due to Poisson
distribution of mapped events, is introduced.









=

1.075.0

05.01.0
1K










−
=

10

01
2K Positive Negative

Junction

(a) (b)

(c) (d)

Images (c) and (d) belong to a second example, where an
edge detection kernel (K2) is applied. The mapper sends a
positive and a negative event per each input event with
different addresses. Positive and negative (c) normalized
histograms are shown. (d) image shows the absolute value of
the combination of positive and negative traffic. We have used
an up-down counter per each address.

IV. COMPARISON WITH DIGITAL FRAME-BASED

CONVOLUTION PROCESSORS.

Digital frame-based convolution processors implemented
in FPGA, GPUs or CPUs measure their performance by
calculating the number of operations per second (MOPS). In
this way, a frame-based convolution processor has to calculate
the number of ADD and MULT operations done to apply a
kernel of convolution to an input frame. Once all the
operations are executed for the whole frame, a result frame is
obtained and sent to another stage. In [15][16] a performance
study was presented for different kernel sizes and platforms.

The FPGA implementation explained in section II is
accessing sequentially all the kernel elements and adding their
values to the corresponding cells. As cells are stored in RAM
memory and this is read cell by cell, time required per each
input event grows linearly with the kernel size. In this case the
hardware implements only one ADD unit. The system
consumes one cycle for reading the cell value and the
corresponding kernel position, a second cycle is used for the
add operation and for writing the result in the internal RAM.
Thus for a 3x3 kernel we need 3x3x2 cycles per each input
event, apart from those needed for the handshake. The
architecture can be easily improved by having a number of
ADD units equivalent to the kernel row size, and allowing the
access to the RAM by blocks. Table I shows the real
performance in MOPS for one ADD, and the simulated
performance for the N ADD in parallel of the NxN kernel
convolution processor.

TABLE I. MEGA OPERATIONS PER SECOND FOR FRAME AND SPIKE-
BASED CONVOLUTION PROCESSORS.

MOPS

Digital frame based 2D

convolutions [15][16]

Spike-based 2D Convolutions

By
mapping

By RAM
integrators

Analog
[12]

Kernel

size

(NxN)

Pent 4

3GHz

CPU

6800

ultra

GPU

 Spartan

3

Virtex II-

Pro

Spartan

II 100

MHz

Spartan

3 (real)

1 sum
50MHz

Spartan

3 (sim)

N sum
50 MHz

VLSI

0,35um

200
MHz

2x2 14 1070 190 221 18,2 - - -

3x3 9,7 278 139 202 22,5 20,5 34,61 -

5x5 5,1 54 112 162 - 23,1 65,78 -

7x7 2,6 22 90 110 - 24,0 98,00 -

9x9 1,6 9 73 61 - 24,4 130,0 -

11x11 1,2 4,7 23 48 - 24,6 163,5 -

31x31 2910

A spike-based convolution processor based on the
probabilistic mapper is not calculating neither MULT nor
ADD operations. It works by projecting the input traffic
following a 1 to N mapping in a first stage, and then by
cancelling negative and positive events of the same address in
a short period of time. In this way the equivalent number of
operations is the number of mappings per each input event.

V. CONCLUSIONS

Two neuro-cortical layers of 64x64 cells with NxN
convolution kernel hardware implementation on FPGA have
been presented. They can work with kernels of up to 11x11
(~500Ksynapses), with 8-bit integrator cells, or with 3x3
kernels (~37Ksynapses), with no integrator cells. The AER
output of both follows a Poisson distribution. Both are
compared with a VLSI analog implementation and tested for
image edge detection filtering. Poisson output distribution of
events and low cost are the main differences and strongest
contributions of this approach. Digital frame-based
architectures are limited by the number of parallel ADD units
and MULT units so their performances decrease while their
kernel sizes increase. Digital RAM-cell spike-based
architecture is limited by RAM access. When parallelizing the
number of ADD units, the performance increases with the
kernel size. Spike-based mapping avoids ADD units since the
operations consist in projecting inputs events with weighted
and signed events and then averaging them in short periods of
time. Thus, its performance depends on SRAM access time.
Kernel sizes are limited by the mapping table capacity.

REFERENCES

[1] T. Serre. “Learning a Dictionary of Shape-Components in Visual
Cortex:Comparison with Neurons, Humans and Machines”, PhD
dissertation, MIT. Comp. Sci. & AI Lab Technical Report, 2006.

[2] G. Shepherd, “The Synaptic Organization of the Brain”. Oxford
University Press, 3rd Edition, 1990.

[3] S. Thorpe et al, “Speed of processing in the human visual system”.
Nature, 381, 520 - 522, June 1996.

[4] C. Neubauer. “Evaluation of Convolution Neural Networks for Visual
Recognition,” IEEE Trans. on Neural Networks, vol. 9, No. 4, pp. 685-
696, July 1998.

[5] M. Sivilotti. “Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks”, Ph.D. Thesis,
California Institute of Technology, Pasadena CA, 1991.

[6] K. Boahen. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[7] W.R. Softky, The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs, J Neurosci. 13 (1) (1993)

[8] A. Linares-Barranco, et al, “On Algorithmic Rate-Coded AER
Generation,” IEEE Trans. On Neural Networks, vol. 17, 2006.

[9] A. Linares-Barranco, et al, “Inter-Spike-Intervals analysis of AER-
Poisson-like generator hardware,” Neurocomputing, vol. 70, 2007.

[10] R. Paz et al. “Test Infrastructure for Address-Event-Representation
Communications”. IWANN 2005. LNCS 3512. Springer Verlag.

[11] A. Linares-Barranco, et al. “An AER-based Actuator Interface for
Controlling an Antrophomorphic Robotic Hand”. IWINAC-2007.

[12] R. Serrano-Gotarredona et al. “A Neuromorphic Cortical-Layer
Microchip for Spike-Based Event Processing Vision Systems”. IEEE
Trans. on Circuits and Systems I. Vol 53, No 12, Dec. 2006.

[13] T. Serrano-Gotarredona , et al. “AER image filtering architecture for
vision processing systems”, IEEE Trans.Circuits and Systems (Part II):
Analog and Digital Signal Processing, vol. 46, 1999.

[14] A. Linares-Barranco et al. “Implementation of a time-warping AER
mapper”. ISCAS 2009. Taiwan.

[15] Ben Cope et al. “Implementation of 2D Convolution on FPGA, GPU
and CPU”. Imperial College Report.

[16] B. Cope, et al. “Have GPUs made FPGAs redundant in the field of
video processing?”.FPT 2005.

[17] C. Farabet, C. Poulet, J. Y. Han, Y. LeCun. “CNP:: An FPGA-based
Processor for Convolutional Networks”. International Conference on
Field Programmable Logic and Applications, 2009. FPL 2009.

[18] N. Farriga, F. Mamalet, S. Roux, F. Yang, M. Paindavoine. “Design of
a Real-Time Face Detection Parallel Architecture Using High-Level
Synthesis”. Hindawi Publishing Corporation. EURASIP Journal on
Embedded Systems. Vol. 2008, id 938256, doi:10.1155/2008/938256

