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Abstract— Image convolution operations in digital computer 

systems are usually very expensive operations in terms of 

resource consumption (processor resources and processing time) 

for an efficient Real-Time application. In these scenarios the 

visual information is divided into frames and each one has to be 

completely processed before the next frame arrives in order to 

warranty the real-time. A spike-based philosophy for computing 

convolutions based on the neuro-inspired Address-Event-

Representation (AER) is achieving high performances. In this 

paper we present two FPGA implementations of AER-based 

convolution processors for relatively small Xilinx FPGAs 

(Spartan-II 200 and Spartan-3 400), which process 64x64 images 

with 11x11 convolution kernels. The maximum equivalent 

operation rate that can be reached is 163.51 MOPS for 11x11 

kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. 

Formulations, hardware architecture, operation examples and 

performance comparison with frame-based convolution 

processors are presented and discussed. 

I. INTRODUCTION

Digital vision systems process sequences of frames from 
conventional video sources, like cameras. For performing 
complex object recognition algorithms, sequences of 
computational operations must be performed for each frame. 
The computational power and speed required makes it difficult 
to develop a real-time autonomous system. But brains perform 
powerful and fast vision processing using millions of small 
and slow cells working in parallel in a totally different way. 
Vision sensing and object recognition in brains is not 
processed frame by frame; it is processed in a continuous way, 
spike by spike, in the brain-cortex. 

The visual cortex is composed by a set of layers ([1][2]), 
starting from the retina. The processing starts when the retina 
captures the information. In recent years significant progress 
has been made in the study of the processing implemented in 
the visual cortex. Many artificial systems that implement bio-
inspired software models use biological-like processing that 
outperform more conventionally engineered machines [3][4]. 
However, these systems generally run at extremely low speeds 
because the models are implemented as software programs. 
For real-time solutions direct hardware implementations of 
these models are required. A growing number of research 
groups world-wide are implementing some of these 
computational principles onto real-time spiking hardware 
through the development and exploitation of the so-called 
AER (Address Event Representation) technology. AER was 
proposed by the Mead lab in 1991 [5] for communicating 

between neuromorphic chips with spikes. Each time a cell on 
a sender device generates a spike, it transmit a digital word 
representing a code or address for that pixel, using an external 
inter-chip digital bus (the AER bus). In the receiver the spikes 
are directed to the pixels whose code or address was on the 
bus. In this way, cells with the same address in the emitter and 
receiver chips are virtually connected by streams of spikes. 
Arbitration circuits ensure that cells do not access the bus 
simultaneously. Usually, these AER circuits are built using 
self-timed asynchronous logic [6]. Several works are already 
present in the literature regarding to visual processing filters. 
Serrano et al. presented chip-processor able to implement 
image convolution filters based on spikes that work at very 
high performance parameters compared to traditional digital 
frame-based convolution processors [15][16]. Another 
approach for solving frame-based convolutions with higher 
performances are the ConvNets [17][18], based on cellular 
neural networks, that are able to achieve a theoretical 
sustained 4 GOPS for 7x7 kernel sizes. 

In this paper we present two FPGA implementations of 
neuro-cortical inspired convolution processors. These circuits 
have been developed studying a previous work for VLSI chip 
[12], but with several differences: (a) Instead of using the 
Integrate and Fire (IF) neuron, we have used RAM based 
integrators in one solution and any integrator in the second 
implementation; (b) instead of using arbitrated rate-code 
output we produce Poisson-like; (c) instead of 31x31 kernel 
sizes, we have limited to 11x11 because of FPGA resources 
limitations in one case and 3x3 in the second case; (d) instead 
of 32x32 expandable image sizes between chips, we have 
implemented 64x64 image sizes but no expandable. 

II. CONVOLUTIONS WITH SPIKES.

A. Description

Complex filtering processing based on AER convolution
chips already exists. These chips are based on Integrate and 
Fire neurons [12]. Each time an event is received, a kernel of 
convolution is copied in the neighbourhood of the targeted IF 
neuron. When a neuron reaches its threshold, a spike is 
produced and the neuron is reset. Bi-dimensional image 
convolution is defined mathematically by the following 
equation, being K an nxm kernel matrix of the convolution, X 
the input image and Y the convolved image. 
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Each convolved image pixel Y(i,j) is defined by the 
corresponding input pixel X(i,j) and weighted adjacent pixels, 
scaled by K coefficients. Therefore an input pixel X(i,j) 
contributes to the value of the output pixel Y(i,j) and their 
neighbours, multiplied by the corresponding kernel 
coefficients K. 

For implementing convolutions using spikes let’s suppose 
Y a matrix of integrators (capacitors for analog circuits or 
registers or RAM cells for digital circuits) to store the result of 
applying a kernel of convolution to an input image X that is 
coded into a stream of events through the AER protocol. Each 
pixel X(i,j) represents a gray value G in the original image. 
Let’s suppose that in the AER bus will be represented, for a 
fixed period of time, an amount of events P·G, proportional to 
the gray level of the pixel. For each event coming from the 
continuous visual source (e.g. an AER retina or a synthetic 
AER generator), the neighbourhood of the corresponding pixel 
address in Y is modified by adding the convolution kernel K, 
stored in a RAM memory and previously configured. Thus, 
each element of Y is modified when an event with the address 
(i,j) arrives with the following equation: 
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Once all the events of the pixel X(i,j) have been received 
and calculated, the integrator value of the corresponding 

address Y(i,j) has accumulated X(i+a,j+b) ba,∀ , (the gray 

values) times the value of the kernel, so the multiplication 
operation has been reached. The output of the convolution 
operation, at this point is stored in the matrix of integrators Y. 
This result can be sent out in several ways: (a) scanning all the 
integrators values and sending out an analog or digital signal. 
Each integrator or register is reset after reading. The system is 
converted into a frame-based output, so the neuro-inspired 
nature is lost. (b) Based on IF neuron, when an integrator 
reaches a threshold a spike is produced and the corresponding 
AER event is produced. The system is totally spike-based, but 
the output cannot follow a Poisson distribution due to the IF 
neuron [8]. Every time a spike is produced by a neuron, this is 
reset. This solution is used by analog convolution chips [13]. 
(c) Generate synthetically a stream of spikes. Having the result
in the Y matrix, a method for synthetic AER generation can be
used to warranty the Poisson distribution of spikes [10].

In [12] the convolution chip is able to receive positive and 
negative events to process signed kernels and therefore, it is 
also able to produce signed output events. This is done by 
duplicating the number of integrators, having a positive and a 
negative integrator per cell. If the positive integrator reaches 
the zero and additional negative values arrive to the cell, the 
negative integrator starts to work. The output event produced 
will be signed depending on the integrator used to produce 
that event. 

B. FPGA Implementation I: Integrators on RAM

Figure 1 shows the block diagram of the first architecture.
It is composed basically by two devices: a FPGA and a 
microcontroller. The FPGA is in charge of the AER-based 
convolution processor and the microcontroller is responsible 

of the PC interface for configuring all the parameters (Kernel 
matrix, kernel size, forgetting period and forgetting quantity). 
The circuit in the FPGA can be divided into four parallel 
blocks: 

• AER event reception and processing. The AER input

traffic is managed by the “AER input” block. Each received

event (i,j) is used to address the Y matrix (64x64 cells).

Centered on (i,j), the kernel is copied in the Y matrix. The

neighborhood of the cell (i,j) will modify their values by

adding the corresponding kernel value. Therefore, Y matrix is

always up-to-date with the convolution result. Y matrix is

implemented using a block of dual-port 8-bit RAM in the

FPGA. The 11x11kernel is stored in another 8-bit block of

one-port RAM. Each kernel value is in the range of -127 to

127. When the kernel is added to Y the result is limited

between 0 and 255, so no signed events are implemented.

• Forgetting mechanism. For high AER input bandwidth

and / or weighted kernels, maximum cell value (255) could be

reached quickly and thus, next events are not processed. Let’s

call this situation saturation effect. For this reason, to avoid

errors, a configurable forgetting circuitry is in the

architecture. The forgetting is based on a programmable

counter that accesses the Y matrix periodically (let’s call

forgetting period) in order to decrease its values by a constant

(let’s call forgetting quantity). Forgetting period and quantity

are configured through USB.

Figure 1.  Bottom: block diagram AER RAM-based convolution processor. 
Top: source images (left column), MATLAB simulation results (center 
column) and FPGA AER convolution output histograms (rigth column). 

• Poisson like AER output. Y matrix always has the result of

the convolution. Thanks to the forgetting mechanism, this

matrix can be captured at any time with a valid convolved

result. To warranty the Poisson distribution of output events,
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the Y matrix is accessed by a Random AER synthetic 

generator [8][9]. 

• Configuration. The controller is in charge of receiving

kernel size and values, forgetting period and amount to

forget. An SPI interface connects a USB microcontroller and

the FPGA. A computer with MATLAB controls the system.
The system has been developed in hardware in a Spartan 3 

400 FPGA. The testing scenario consists on a USB-AER 
working as Uniform AER generator [9], which output is 
connected to an AER-Robot configured as the AER 
convolution processor; and its output is connected to a second 
USB-AER working as an AER datalogger. 
Figure 1 (top, left column) shows an example bitmap and 

its negative version. These bitmaps are converted into AER 
using an AER Uniform generator to feed the convolution 
processor. When applying a kernel for edge detection (ON to 
OFF, see figure 2, matrix K), opposite responses are expected. 
Bottom row shows the reconstructed normalized histograms 
for 512Kevents obtained with the AER datalogger [11], from 
convolution processor output. The middle column images are 
the result of applying a MATLAB conv2() function. 

III. SPIKE-BASED CONVOLUTIONS BY COMPLEX MAPPINGS.

A. Description.

In this section we explain how to implement convolutions
using a probabilistic multi-event mapper [10][14]. This 
mapper is able to send several different output events per each 
input event and each output event can be repeated several 
times. Let’s suppose that M is the number of elements of a 
convolution kernel K. Each of these mapped events has 
associated a repetition factor (R) and a probability (P) of being 
sent or not. For each input event (Ini), up to dim(K) output 
events are generated. Thus a projective field of events is 
generated for each input event. From the receiver point of 
view, the number of events for the same address depends on 
the probability and repetition factor of the input events in the 
neighbourhood. This neighbourhood is as big as the kernel 
size. Therefore, the number of events for a fixed output 
address follows the expression: 
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Therefore, to calculate the repetition and probability, the 
following equation can be applied: 
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For example, for a desired kernel coefficient Ki=1.2, 
repetition factor is Ri=2 and probability is Pi=0.6. 

B. Implementation II: Probabilistic Mapper.

An AER mapper uses the identification of each emitter
neuron that is present in the AER bus to address its mapping 
table. Then, a list of mapped addresses is sent replacing the 
original event in the AER communication. Each mapped event 
is stored in the mapping table with two parameters: a 
repetitious factor (R) and an output probability (P). A FSM is 
in charge of sending the list of events if the probability 

function allows it. This FSM will repeat each mapped event 
according to R (see figure 2, top). An internal LFSR (Left 
Feedback Shift Register) is used to generate pseudorandom 
numbers which are compared with the probability in order to 
decide if the mapped event is sent. In this way a Poisson 
output distribution is obtained [8][9]. 

 

Figure 2.  Top: Probabilistic Multi-event mapper block diagram. Right: (a) 
source image, (b) K1 convolution histogram, (c) K2 postive output traffic 

and negative traffic, (d) abs(positve+negative) K2 histogram.  

With this mapper, sophisticated operations can be 
performed to events during transmission time, like small 
kernel convolutions, for example. As the probability can be 
modified per each mapped event, it is possible to implement a 
one-to-dim(K) mapping, where each of these dim(K) events 
can be modulated with P and R along time, as expressed in the 
previous section. Thus, this architecture is able to increase or 
reduce the frequency of events of a neighbourhood per each 
input event according to a kernel of convolutions. In the other 
hand, mapped events can be positive and negative, so signed 
events appears in the output AER bus. A receiver must take 
the average between positive and negative events per each 
address for completing the convolution operation. 

This architecture has been tested in a USB-AER board that 
is composed by a Spartan II FPGA and 2Mb of SRAM 
memory (mapping table) [10]. It is able to process a one-to-
one mapping in 120ns, and a one-to-M effective mapping in 
(60+M·60)ns. If a mapped event is not sent the time 
consumption decreases in 20ns. 

Figure 2 bottom shows two examples. A source bitmap 
(64x64) (a) is converted to AER format by the Uniform 
method [9]. (b) is the normalized histogram of collecting AER 
traffic for 100ms, after applying a simple 2x2 kernel 
convolution K1. The resulting image should be the initial one 
with soft-edges. An added random noise, due to Poisson 
distribution of mapped events, is introduced. 
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Images (c) and (d) belong to a second example, where an 
edge detection kernel (K2) is applied. The mapper sends a 
positive and a negative event per each input event with 
different addresses. Positive and negative (c) normalized 
histograms are shown. (d) image shows the absolute value of 
the combination of positive and negative traffic. We have used 
an up-down counter per each address. 

IV. COMPARISON WITH DIGITAL FRAME-BASED

CONVOLUTION PROCESSORS. 

Digital frame-based convolution processors implemented 
in FPGA, GPUs or CPUs measure their performance by 
calculating the number of operations per second (MOPS). In 
this way, a frame-based convolution processor has to calculate 
the number of ADD and MULT operations done to apply a 
kernel of convolution to an input frame. Once all the 
operations are executed for the whole frame, a result frame is 
obtained and sent to another stage. In [15][16] a performance 
study was presented for different kernel sizes and platforms. 

The FPGA implementation explained in section II is 
accessing sequentially all the kernel elements and adding their 
values to the corresponding cells. As cells are stored in RAM 
memory and this is read cell by cell, time required per each 
input event grows linearly with the kernel size. In this case the 
hardware implements only one ADD unit. The system 
consumes one cycle for reading the cell value and the 
corresponding kernel position, a second cycle is used for the 
add operation and for writing the result in the internal RAM. 
Thus for a 3x3 kernel we need 3x3x2 cycles per each input 
event, apart from those needed for the handshake. The 
architecture can be easily improved by having a number of 
ADD units equivalent to the kernel row size, and allowing the 
access to the RAM by blocks. Table I shows the real 
performance in MOPS for one ADD, and the simulated 
performance for the N ADD in parallel of the NxN kernel 
convolution processor. 

TABLE I. MEGA OPERATIONS PER SECOND FOR FRAME AND SPIKE-
BASED CONVOLUTION PROCESSORS. 

MOPS 

Digital frame based 2D 

convolutions [15][16] 

Spike-based 2D Convolutions 

By 
mapping

By RAM 
integrators 

Analog 
[12] 

Kernel 

size 

(NxN) 

Pent 4 

3GHz 

CPU 

6800 

ultra 

GPU 

 Spartan 

3 

Virtex II-

Pro 

Spartan 

II 100 

MHz 

Spartan 

3 (real) 

1 sum 
50MHz 

Spartan 

3 (sim) 

N sum 
50 MHz 

VLSI 

0,35um 

200 
MHz 

2x2 14 1070 190 221 18,2 - - - 

3x3 9,7 278 139 202 22,5 20,5 34,61 - 

5x5 5,1 54 112 162 - 23,1 65,78 - 

7x7 2,6 22 90 110 - 24,0 98,00 - 

9x9 1,6 9 73 61 - 24,4 130,0 - 

11x11 1,2 4,7 23 48 - 24,6 163,5 - 

31x31 2910 

A spike-based convolution processor based on the 
probabilistic mapper is not calculating neither MULT nor 
ADD operations. It works by projecting the input traffic 
following a 1 to N mapping in a first stage, and then by 
cancelling negative and positive events of the same address in 
a short period of time. In this way the equivalent number of 
operations is the number of mappings per each input event. 

V. CONCLUSIONS

Two neuro-cortical layers of 64x64 cells with NxN 
convolution kernel hardware implementation on FPGA have 
been presented. They can work with kernels of up to 11x11 
(~500Ksynapses), with 8-bit integrator cells, or with 3x3 
kernels (~37Ksynapses), with no integrator cells. The AER 
output of both follows a Poisson distribution. Both are 
compared with a VLSI analog implementation and tested for 
image edge detection filtering. Poisson output distribution of 
events and low cost are the main differences and strongest 
contributions of this approach. Digital frame-based 
architectures are limited by the number of parallel ADD units 
and MULT units so their performances decrease while their 
kernel sizes increase. Digital RAM-cell spike-based 
architecture is limited by RAM access. When parallelizing the 
number of ADD units, the performance increases with the 
kernel size. Spike-based mapping avoids ADD units since the 
operations consist in projecting inputs events with weighted 
and signed events and then averaging them in short periods of 
time. Thus, its performance depends on SRAM access time. 
Kernel sizes are limited by the mapping table capacity. 
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