437 research outputs found

    Testing integrability with a single bit of quantum information

    Get PDF
    We show that deterministic quantum computing with a single bit (DQC1) can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where NN is the dimension of the Hilbert space of the system under study. This is a square root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.Comment: Minor changes taking into account Howard Wiseman's comment: quant-ph/0305153. Accepted for publication in Phys. Rev.

    A Method for Modeling Decoherence on a Quantum Information Processor

    Full text link
    We develop and implement a method for modeling decoherence processes on an N-dimensional quantum system that requires only an N2N^2-dimensional quantum environment and random classical fields. This model offers the advantage that it may be implemented on small quantum information processors in order to explore the intermediate regime between semiclassical and fully quantum models. We consider in particular σzσz\sigma_z\sigma_z system-environment couplings which induce coherence (phase) damping, though the model is directly extendable to other coupling Hamiltonians. Effective, irreversible phase-damping of the system is obtained by applying an additional stochastic Hamiltonian on the environment alone, periodically redressing it and thereby irreversibliy randomizing the system phase information that has leaked into the environment as a result of the coupling. This model is exactly solvable in the case of phase-damping, and we use this solution to describe the model's behavior in some limiting cases. In the limit of small stochastic phase kicks the system's coherence decays exponentially at a rate which increases linearly with the kick frequency. In the case of strong kicks we observe an effective decoupling of the system from the environment. We present a detailed implementation of the method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure

    A quantum gate array can be programmed to evaluate the expectation value of any operator

    Get PDF
    A programmable gate array is a circuit whose action is controlled by input data. In this letter we describe a special--purpose quantum circuit that can be programmed to evaluate the expectation value of any operator OO acting on a space of states of NN dimensions. The circuit has a program register whose state ∣Κ(O)>P|\Psi(O)>_P encodes the operator OO whose expectation value is to be evaluated. The method requires knowledge of the expansion of OO in a basis of the space of operators. We discuss some applications of this circuit and its relation to known instances of quantum state tomography.Comment: 4 pages, 3 figures include

    Discrete Wigner functions and the phase space representation of quantum teleportation

    Full text link
    We present a phase space description of the process of quantum teleportation for a system with an NN dimensional space of states. For this purpose we define a discrete Wigner function which is a minor variation of previously existing ones. This function is useful to represent composite quantum system in phase space and to analyze situations where entanglement between subsystems is relevant (dimensionality of the space of states of each subsystem is arbitrary). We also describe how a direct tomographic measurement of this Wigner function can be performed.Comment: 8 pages, 1 figure, to appear in Phys Rev

    Decoherence, Chaos, and the Second Law

    Full text link
    We investigate implications of decoherence for quantum systems which are classically chaotic. We show that, in open systems, the rate of von Neumann entropy production quickly reaches an asymptotic value which is: (i) independent of the system-environment coupling, (ii) dictated by the dynamics of the system, and (iii) dominated by the largest Lyapunov exponent. These results shed a new light on the correspondence between quantum and classical dynamics as well as on the origins of the ``arrow of time.''Comment: 13 Pages, 2 Figures available upon request, Preprint LA-UR-93-, The new version contains the text, the previous one had only the Macros: sorry

    Factoring in a Dissipative Quantum Computer

    Full text link
    We describe an array of quantum gates implementing Shor's algorithm for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers, adders, etc) which are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer which is running the program to factor N = 15 while interacting with a dissipative environment. As a consequence of this interaction randomly selected qubits may spontaneously decay. Using the results of our numerical simulations we analyze the efficiency of some simple error correction techniques.Comment: plain tex, 18 pages, 8 postscript figure

    Quantum computers in phase space

    Full text link
    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phase space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev

    Environment--Induced Decoherence, Classicality and Consistency of Quantum Histories

    Get PDF
    We prove that for an open system, in the Markovian regime, it is always possible to construct an infinite number of non trivial sets of histories that exactly satisfy the probability sum rules. In spite of being perfectly consistent, these sets manifest a very non--classical behavior: they are quite unstable under the addition of an extra instant to the list of times defining the history. To eliminate this feature --whose implications for the interpretation of the formalism we discuss-- and to achieve the stability that characterizes the quasiclassical domain, it is necessary to separate the instants which define the history by time intervals significantly larger than the typical decoherence time. In this case environment induced superselection is very effective and the quasiclassical domain is characterized by histories constructed with ``pointer projectors''.Comment: 32 pages (1 figure, postcript included at the end: use epsf.tex and follow instructions before Texing) LA-UR-93-141

    The Spitzer Survey of Stellar Structure in Galaxies (S^4G)

    Get PDF
    The Spitzer Survey of Stellar Structure in Galaxies S^4G is an Exploration Science Legacy Program approved for the Spitzer post-cryogenic mission. It is a volume-, magnitude-, and size-limited (d < 40 Mpc, |b| > 30 degrees, m_(Bcorr) < 15.5, D25>1') survey of 2,331 galaxies using IRAC at 3.6 and 4.5 microns. Each galaxy is observed for 240 s and mapped to > 1.5 x D25. The final mosaicked images have a typical 1 sigma rms noise level of 0.0072 and 0.0093 MJy / sr at 3.6 and 4.5 microns, respectively. Our azimuthally-averaged surface brightness profile typically traces isophotes at mu_3.6 (AB) (1 sigma) ~ 27 mag arcsec^-2, equivalent to a stellar mass surface density of ~ 1 Msun pc^-2. S^4G thus provides an unprecedented data set for the study of the distribution of mass and stellar structures in the local Universe. This paper introduces the survey, the data analysis pipeline and measurements for a first set of galaxies, observed in both the cryogenic and warm mission phase of Spitzer. For every galaxy we tabulate the galaxy diameter, position angle, axial ratio, inclination at mu_3.6 (AB) = 25.5 and 26.5 mag arcsec^-2 (equivalent to ~ mu_B (AB) =27.2 and 28.2 mag arcsec^-2, respectively). These measurements will form the initial S^4G catalog of galaxy properties. We also measure the total magnitude and the azimuthally-averaged radial profiles of ellipticity, position angle, surface brightness and color. Finally, we deconstruct each galaxy using GALFIT into its main constituent stellar components: the bulge/spheroid, disk, bar, and nuclear point source, where necessary. Together these data products will provide a comprehensive and definitive catalog of stellar structures, mass and properties of galaxies in the nearby Universe.Comment: Accepted for Publication in PASP, 14 pages, 13 figure

    Radiation tests on commercial instrumentation amplifiers, analog switches &amp; DAC's

    Get PDF
    A study of several commercial instrumentation amplifiers (INA110, INA111, INA114, INA116, INA118 & INA121) under neutron and vestigial gamma radiation was done. Some parameters (Gain, input offset voltage, input bias currents) were measured on-line and bandwidth, and slew rate were determined before and after radiation. The results of the testing of some voltage references REF102 and ADR290GR and the DG412 analog switch are shown. Finally, different digital-to-analog converters were tested under radiation
    • 

    corecore