478 research outputs found

    Cholinergic immunomodulation in inflammatory bowel diseases

    Get PDF
    Inflammatory bowel diseases (IBD) are chronic intestinal disorders characterized by dysregulated immune responses to resident microbiota in genetically susceptible hosts. The activation of the cholinergic system has been proposed for the treatment of IBD patients according to its potential anti-inflammatory effect in vivo. The α-7-nicotinic-acetylcholine receptor (α7nAChR) is involved in the inhibition of inflammatory processes, modulating the production of cytokines, suppressing dendritic cells and macrophage activity, leading to the suppression of T cells. In this review, we address the most recent studies and clinical trials concerning cholinergic signaling and its therapeutic potential for inflammatory bowel diseases

    Tumor-neutrophil crosstalk promotes in vitro and in vivo glioblastoma progression

    Get PDF
    Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression. Methods: Using in vitro and in vivo assays, we demonstrate the existence of bidirectional GB and neutrophil communication, directly promoting an immunosuppressive TME. Results and discussion: Neutrophils have shown to play an important role in tumor malignancy especially in advanced 3D tumor model and Balb/c nude mice experiments, implying a time- and neutrophil concentration-dependent modulation. Studying the tumor energetic metabolism indicated a mitochondria mismatch shaping the TME secretome. The given data suggests a cytokine milieu in patients with GB that favors the recruitment of neutrophils, sustaining an anti inflammatory profile which is associated with poor prognosis. Besides, glioma neutrophil crosstalk has sustained a tumor prolonged activation via NETs formation, indicating the role of NFkB signaling in tumor progression. Moreover, clinical samples have indicated that neutrophil-lymphocyte ratio (NLR), IL-1b, and IL-10 are associated with poor outcomes in patients with GB. Conclusion: These results are relevant for understanding how tumor progression occurs and how immune cells can help in this process

    Effects of living and metabolically inactive mesenchymal stromal cells and their derivatives on monocytes and macrophages

    Get PDF
    Mesenchymal stromal cells (MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a non-classical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs (metabolically active cells) and metabolically inactive MSCs (dead cells that lost metabolic activity by induced inactivation) and their derivatives (extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic approaches, which induce the anti-inflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials

    Cell membrane and bioactive factors derived from mesenchymal stromal cells: Cell-free based therapy for inflammatory bowel diseases

    Get PDF
    Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract associated with multifactorial conditions such as ulcerative colitis and Crohn's disease. Although the underlying mechanisms of IBD remain unclear, growing evidence has shown that dysregulated immune system reactions in genetically susceptible individuals contribute to mucosal inflammation. However, conventional treatments have been effective in inducing remission of IBD but not in preventing the relapse of them. In this way, mesenchymal stromal cells (MSC) therapy has been recognized as a promising treatment for IBD due to their immunomodulatory properties, ability to differentiate into several tissues, and homing to inflammatory sites. Even so, literature is conflicted regarding the location and persistence of MSC in the body after transplantation. For this reason, recent studies have focused on the paracrine effect of the biofactors secreted by MSC, especially in relation to the immunomodulatory potential of soluble factors (cytokines, chemokines, and growth factors) and extracellular vehicles that are involved in cell communication and in the transfer of cellular material, such as proteins, lipids, and nucleic acids. Moreover, treatment with interferon-γ, tumor necrosis factor-α, and interleukin- 1β causes MSC to express immunomodulatory molecules that mediate the suppression via cell-contact dependent mechanisms. Taken together, we present an overview of the role of bioactive factors and cell membrane proteins derived from MSC as a cell-free therapy that can improve IBD treatment

    Indução de diferenciação In Vitro de Células-Tronco Embrionárias em células de tecido cardíaco e nervoso

    Get PDF
    Embryonic stem cells are pluripotent cell lines with the capacity of self-renewal and a broad differentiation plasticity. They are isolated from preimplantation embryos and can be cultured in vitro for long time without losing their pluripotency. Embryonic stem cells can also differentiate in vitro with the proper combination of growth and differentiation factors, cells will differentiate into more advanced stages of embryogenesis generating different adult cell type. In the present study, we induced the in vitro differentiation of mouse embryonic stem cells (line R1) into cardiomyocytes and neuronal cells. These differentiations were evaluated by reverse transcription-polymerase chain reaction to verify presence of tissue-specific markers.Células-tronco embrionárias são linhagens celulares pluripotentes capazes de se multiplicar indefinidamente e com grande capacidade de diferenciação celular. São isoladas de embriões em estágio pré-implantacional e podem ser cultivadas por longo tempo em laboratório sem perder sua pluripotencialidade. Células-tronco embrionárias podem, ainda, se diferenciar in vitro através da adição de fatores de crescimento e diferenciação ao meio de cultivo. As células se diferenciarão em estágios mais avançados de embriogênese, gerando tipos diferentes de células adultas. No presente estudo, induzimos a diferenciação in vitro de células-tronco embrionárias de camundongos (linhagem R1) em células de tecido cardíaco e nervoso. A diferenciação foi avaliada pela reação em cadeia da polimerase precedida de transcrição reversa para verificar a presença de marcadores tecido-específicos

    Mouse embryonic stem cells: The establishment of the system to produce differentiated cell types in vitro

    Get PDF
    During the last few years, embryonic stem (ES) cells have been a new tool in cell biology which is very promising for the scientific community to develop new cell therapies. ES cells are the only cell type that can differentiate into derivates of the three primary germ layers, not only in vivo but also, and most important, in vitro. This so-called pluripotency has resulted in the field of stem cell technology going into overdrive, and the establishment of many protocols for optimal maintenance, culture, genetic transfection and in vitro differentiation. The first pluripotent cells had been derived from teratocarcinomas, maligne tumors, and showed some disadvantages. Therefore later embryonic stem cells, and now adult stem cells are getting special attention from the scientists. In this study, we established for the first time in our country, the prolonged culture of undifferentiated ES cells in vitro and the pointed induction of cell differentiation into specific cell types. It is the result of an international collaboration program supported by Brazil and Germany, CAPES and DAAD (PROBRAL). The well-established routine should be clearly demonstrated by the continuous culture and propagation of several mouse ES lines in vitro under specific culture conditions preventing differentiation. On the other hand, these ES cells were exposed to defined differentiation induction systems to obtain specialized cells as cardiogenic, neurogenic and myogenic cell types. This demonstrates the successful procedure to induce ES cell line differentiation. In this study, we established both routine systems, with and without differentiation. This results gave us competence and possibility to develop a series of different scientific approaches

    Temporal clinical, proteomic, histological and cellular immune responses of dextran sulfate sodium-induced acute colitis

    Get PDF
    AIM To investigate the temporal clinical, proteomic, histological and cellular immune profiles of dextran sulfate sodium (DSS)-induced acute colitis. METHODS Acute colitis was induced in C57BL/6 female mice by administration of 1%, 2% or 3% DSS in drinking water for 7 d. Animals were monitored daily for weight loss, stool consistency and blood in the stool, while spleens and colons were harvested on day 8. A time course analysis was performed in mice ingesting 3% DSS, which included colon proteomics through multiplex assay, colon histological scoring by a blinded investigator, and immune response through flow cytometry or immunohistochemistry of the spleen, mesenteric lymph node and colon. RESULTS Progressive worsening of clinical colitis was observed with increasing DSS from 1% to 3%. In mice ingesting 3% DSS, colon shortening and increase in proinflammatory factors starting at day 3 was observed, with increased spleen weights at day 6 and day 8. This coincided with cellular infiltration in the colon from day 2 to day 8, with progressive accumulation of macrophages F4/80+, T helper CD4+ (Th), T cytotoxic CD8+ (Tcyt) and T regulatory CD25+ (Treg) cells, and progressive changes in colonic pathology including destruction of crypts, loss of goblet cells and depletion of the epithelial barrier. Starting on day 4, mesenteric lymph node and/ or spleen presented with lower levels of Treg, Th and Tcyt cells, suggesting an immune cell tropism to the gut. These results demonstrate that the severity of experimental colitis is dependent on DSS concentration, correlated with clinical, proteomic, histological and cellular immune response on 3% DSS

    Age-dependent availability and functionality of bone marrow stem cells in an experimental model of acute and chronic myocardial infarction

    Get PDF
    The aim of this study was to investigate the effect of aging and timing of left ventricular ischemic injury on the availability and functionality of stem cells. We studied young and aged male inbred Lewis rats that were used as donors of bone marrow mononuclear cells (BM-MNCs), divided in four experimental groups: controls, sham operated, 48 h post-myocardial infarction (MI), and 28 days post-MI. In vitro studies included flow cytometry analysis, hematopoietic colony-forming capacity, and invasion assays of migration capacity. BM-MNCs from these groups were transplanted in female rats after MI induction. Late engraftment was evaluated by real-time PCR of the SRY chromosome. Percentage of CD34+/CD45+low cells was similar among different experimental groups in young rats, but was significantly higher in aged animals (p < 0.001), particularly 28 days post-MI. KDR+/CD34+ cells were increased 48 h after MI and decreased 28 days post-MI in young animals, while they were profoundly reduced in the aged group (p < 0.001). Triple staining for CD44+/CD29+/CD71+ cells was similar in different groups of aged rats, but we observed an intense increase 48 h post-MI in young animals. Colony-forming units and cytokine-induced migration were significantly attenuated 28 days after the MI. Late engraftment in infarcted transplanted female hearts was present, but considerably heterogeneous. Finally, recovery of left ventricular systolic function in transplanted female recipients was significantly influenced by donors’ BM-MNCs groups (p < 0.01). We have demonstrated that aging and timing of myocardial injury are factors that may act synergistically in determining stem cell availability and function. Such interaction should be considered when planning new cell therapy strategies for acute and chronic ischemic heart disease in the clinical arena
    • …
    corecore