14 research outputs found
Quantification of Lipoprotein Uptake in Vivo Using Magnetic Particle Imaging and Spectroscopy
Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT
Control over epitaxy and the role of the InAs/Al interface in hybrid two-dimensional electron gas systems
In-situ synthesised semiconductor/superconductor hybrid structures became an
important material platform in condensed matter physics. Their development
enabled a plethora of novel quantum transport experiments with focus on Andreev
and Majorana physics. The combination of InAs and Al has become the workhorse
material and has been successfully implemented in the form of one-dimensional
structures and two-dimensional electron gases. In contrast to the
well-developed semiconductor parts of the hybrid materials, the direct effect
of the crystal nanotexture of Al films on the electron transport still remains
unclear. This is mainly due to the complex epitaxial relation between Al and
the semiconductor. We present a study of Al films on shallow InAs
two-dimensional electron gas systems grown by molecular beam epitaxy, with
focus on control of the Al crystal structure. We identify the dominant grain
types present in our Al films and show that the formation of grain boundaries
can be significantly reduced by controlled roughening of the epitaxial
interface. Finally, we demonstrate that the implemented roughening does not
negatively impact either the electron mobility of the two-dimensional electron
gas or the basic superconducting properties of the proximitized system.Comment: 12 pages, 7 figures and supplementary materia
Quantification of Lipoprotein Uptake in Vivo Using Magnetic Particle Imaging and Spectroscopy
Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT
Taxonomy and polytene chromosomes of Simulium parnassum Malloch (Diptera: Simuliidae)
Volume: 102Start Page: 843End Page: 85
Wildland Fire in Ecosystems Effects of Fire on Flora
This state-of-knowledge review about the effects of fire on flora and fuels can assist land managers with ecosystem and fire management planning and in their efforts to inform others about the ecological role of fire. Chapter topics include fire regime classification, autecological effects of fire, fire regime characteristics and postfire plant community developments in ecosystems throughout the United States and Canada, global climate change, ecological principles of fire regimes, and practical considerations for managing fire in an ecosytem context