32 research outputs found

    Superfluid Helium Tanker (SFHT) study

    Get PDF
    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997

    Eighteen year weight trajectories and metabolic markers of diabetes in modernising China: which timescale is most relevant? Reply to Vistisen D and Færch K [letter]

    Get PDF
    Aims/HypothesisAlthough obesity is a major risk factor for diabetes, little is known about weight gain trajectories across adulthood, and whether they are differentially associated with metabolic markers of diabetes.MethodsWe used fasting blood samples and longitudinal weight data for 5,436 adults (5,734 observations, aged 18–66years) from the China Health and Nutrition Survey (1991–2009). Using latent class trajectory analysis, we identified different weight gain trajectories in six age and sex strata, and used multivariable general linear mixed effects models to assess elevated metabolic markers of diabetes (fasting glucose, HbA1c, HOMA-IR, insulin) across weight trajectory classes. Models were fitted within age and sex strata, and controlled for baseline weight (or baseline weight by weight trajectory interaction terms), height, and smoking habit, with random intercepts to control for community-level correlations.ResultsCompared with weight gain, classes with weight maintenance, weight loss, or a switch from weight gain to loss had lower values for metabolic markers of diabetes. These associations were stronger among younger women (aged 18–29 and 30–39years) and men (18–29years) than in older (40–66years) men and women. An exception was HOMA-IR, which showed class differences across all ages (at least p < 0.004).ConclusionTrajectory analysis identified heterogeneity in adult weight gain associated with diabetes-related metabolic markers, independent of baseline weight. Our findings suggest that variation in metabolic markers of diabetes across patterns of weight gain is masked by a homogeneous classification of weight gain.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-014-3284-y) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association.

    Get PDF
    Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update*The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on heart disease, stroke, and other cardiovascular disease-related morbidity and mortality and the risks, quality of care, medical procedures and operations, and costs associated with the management of these diseases in a single document*Indeed, since 1999, the Statistical Update has been cited \u3e10 500 times in the literature, based on citations of all annual versions*In 2011 alone, the various Statistical Updates were cited ≈1500 times (data from ISI Web of Science)*In recent years, the Statistical Update has undergone some major changes with the addition of new chapters and major updates across multiple areas, as well as increasing the number of ways to access and use the information assembled*For this year\u27s edition, the Statistics Committee, which produces the document for the AHA, updated all of the current chapters with the most recent nationally representative data and inclusion of relevant articles from the literature over the past year*This year\u27s edition also implements a new chapter organization to reflect the spectrum of cardiovascular health behaviors and health factors and risks, as well as subsequent complicating conditions, disease states, and outcomes*Also, the 2013 Statistical Update contains new data on the monitoring and benefits of cardiovascular health in the population, with additional new focus on evidence-based approaches to changing behaviors, implementation strategies, and implications of the AHA\u27s 2020 Impact Goals*Below are a few highlights from this year\u27s Update . © 2013 American Heart Association, Inc

    Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association.

    Get PDF
    Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a critical resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best available national data on heart disease, stroke, and other cardiovascular disease-related morbidity and mortality and the risks, quality of care, use of medical procedures and operations, and costs associated with the management of these diseases in a single document. Indeed, since 1999, the Statistical Update has been cited &gt;10 500 times in the literature, based on citations of all annual versions. In 2012 alone, the various Statistical Updates were cited ≈3500 times (data from Google Scholar). In recent years, the Statistical Update has undergone some major changes with the addition of new chapters and major updates across multiple areas, as well as increasing the number of ways to access and use the information assembled. For this year's edition, the Statistics Committee, which produces the document for the AHA, updated all of the current chapters with the most recent nationally representative data and inclusion of relevant articles from the literature over the past year. This year's edition includes a new chapter on peripheral artery disease, as well as new data on the monitoring and benefits of cardiovascular health in the population, with additional new focus on evidence-based approaches to changing behaviors, implementation strategies, and implications of the AHA's 2020 Impact Goals. Below are a few highlights from this year's Update. © 2013 American Heart Association, Inc

    Crop Updates 2001 - Cereals

    Get PDF
    This session covers forty two papers from different authors: PLENARY 1. Planning your cropping program in season 2001, Dr Ross Kingwell, Agriculture Western Australia and University of Western Australia WORKSHOP 2. Can we produce high yields without high inputs? Wal Anderson, Centre for Cropping Systems, Agriculture Western Australia VARIETIES 3. Local and interstate wheat variety performance and $ return to WA growers, Eddy Pol, Peter Burgess and Ashley Bacon, Agritech Crop Research CROP ESTABLISHMENT 4 Soil management of waterlogged soils, D.M. Bakker, G.J. Hamilton, D. Houlbrooke and C. Spann, Agriculture Western Australia 5. Effect of soil amelioration on wheat yield in a very dry season, M.A Hamza and W.K. Anderson, Agriculture Western Australia 6. Fuzzy tramlines for more yield and less weed, Paul Blackwell1 and Maurice Black2 1Agriculture Western Australia, 2Harbour Lights Estate, Geraldton 7. Tramline farming for dollar benefits, Paul Blackwell, Agriculture Western Australia NUTRITION 8. Soil immobile nutrients for no-till crops, M.D.A. Bolland1, R.F. Brennan1,and W.L. Crabtree2, 1Agriculture Western Australia, 2Western Australian No-Tillage Farmers Association 9. Burn stubble windrows: to diagnose soil fertility problems, Bill Bowden, Chris Gazey and Ross Brennan, Agriculture Western Australia 10. Calcium: magnesium ratios; are they important? Bill Bowden1, Rochelle Strahan2, Bob Gilkes2 and Zed Rengel2 1Agriculture Western Australia, 2Department of Soil Science and Plant Nutrition, UWA 11. Responses to late foliar applications of Flexi-N, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 12. A comparison of Flexi-N placements, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 13. What is the best way to apply potassium? Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, CSBP futurefarm 14. Claying affects potassium nutrition in barley, Stephen Loss, David Phelps, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 15. Nitrogen and potassium improve oaten hay quality, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm AGRONOMY 16. Agronomic responses of new wheat varieties in the northern wheatbelt, Darshan Sharma and Wal Anderson, Agriculture Western Australia 17. Wheat agronomy research on the south coast, Mohammad Amjad and Wal Anderson, Agriculture Western Australia 18. Influence of sowing date on wheat yield and quality in the south coast environment, Mohammad Amjadand Wal Anderson, Agriculture Western Australia 19. More profit from durum, Md.Shahajahan Miyan and Wal Anderson, Agriculture Western Australia 20. Enhancing recommendations of flowering and yield in wheat, JamesFisher1, Senthold Asseng2, Bill Bowden1 and Michael Robertson3 ,1AgricultureWestern Australia, 2CSIRO Plant Industry, 3CSIRO Sustainable Ecosystems 21. When and where to grow oats, Glenn McDonald, Agriculture Western Australia 22. Managing Gaidner barley for quality, Kevin Young and Blakely Paynter, Agriculture Western Australia PESTS AND DISEASES 23. Strategies for leaf disease management in wheat, Jatinderpal Bhathal1, Cameron Weeks2, Kith Jayasena1 and Robert Loughman1 ,1Agriculture Western Australia. 2Mingenew-Irwin Group Inc 24. Strategies for leaf disease management in malting barley, K. Jayasena1, Q. Knight2 and R. Loughman1, 1Agriculture Western Australia, 2IAMA Agribusiness 25. Cereal disease diagnostics, Dominie Wright and Nichole Burges, Agriculture Western Australia 26. The big rust: Did you get your money back!! Peter Burgess, Agritech Crop Research 27. Jockey – winning the race against disease in wheat, Lisa-Jane Blacklow, Rob Hulme and Rob Giffith, Aventis CropScience 28. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 29. Further developments in forecasting aphid and virus risk in cereals, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 30. Effect of root lesion nematodes on wheat yields in Western Australia, S. B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia 31. Rotational crops and varieties for management of root lesion nematodes in Western Australia, S.B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia WEEDS 32. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 33. Tolerance of wheat to phenoxy herbicides,Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 34. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Agriculture Western Australia 35. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia BREEDING 36. Towards molecular breeding of barley: construction of a molecular genetic map, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Garry Ablett3, Reg Lance4, Rob Potter5 and Peter Langridge6,1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Qld, 3Centre for Plant Conservation Genetics Southern Cross University, Lismore NSW, 5SABC Murdoch University, WA, 6Department of Plant Science University of Adelaide, Glen Osmond SA 37. Toward molecular breeding of barley: Identifying markers linked to genes for quantitative traits, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Reg Lance3, Garry Ablett4, Greg Platz2, Joe Panozzo5, Barbara Read6, David Moody5, Andy Barr7 and Peter Langridge7 , 1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Warwick, QLD,3Agriculture Western Australia, 4Centre for Plant Conservation Genetics, Southern Cross University, Lismore NSW, 5VIDA Private Bag 260, Horsham VIC, 6NSW Dept. of Agriculture, Wagga Wagga NSW, 7Department of Plant Science, University of Adelaide, Glen Osmond SA 38. Can we improve grain yield by breeding for greater early vigour in wheat? Tina Botwright1, Tony Condon1, Robin Wilson2 and Iain Barclay2, 1CSIRO Plant Industry, 2Agriculture Western Australia MARKETING AND QUALITY 39. The Crop Improvement Royalty, Howard Carr, Agriculture Western Australia 40. GrainGuardÔ - The development of a protection plan for the wheat industry, Greg Shea, Agriculture Western Australia CLIMATE 41. Rainfall – what happened in 2000 and the prospects for 2001, Ian Foster, Agriculture Western Australia 42. Software for climate management issues, David Tennant,Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    Eighteen year weight trajectories and metabolic markers of diabetes in modernising China: which timescale is most relevant? Reply to Vistisen D and Færch K [letter]

    No full text
    Aims/HypothesisAlthough obesity is a major risk factor for diabetes, little is known about weight gain trajectories across adulthood, and whether they are differentially associated with metabolic markers of diabetes.MethodsWe used fasting blood samples and longitudinal weight data for 5,436 adults (5,734 observations, aged 18–66years) from the China Health and Nutrition Survey (1991–2009). Using latent class trajectory analysis, we identified different weight gain trajectories in six age and sex strata, and used multivariable general linear mixed effects models to assess elevated metabolic markers of diabetes (fasting glucose, HbA1c, HOMA-IR, insulin) across weight trajectory classes. Models were fitted within age and sex strata, and controlled for baseline weight (or baseline weight by weight trajectory interaction terms), height, and smoking habit, with random intercepts to control for community-level correlations.ResultsCompared with weight gain, classes with weight maintenance, weight loss, or a switch from weight gain to loss had lower values for metabolic markers of diabetes. These associations were stronger among younger women (aged 18–29 and 30–39years) and men (18–29years) than in older (40–66years) men and women. An exception was HOMA-IR, which showed class differences across all ages (at least p < 0.004).ConclusionTrajectory analysis identified heterogeneity in adult weight gain associated with diabetes-related metabolic markers, independent of baseline weight. Our findings suggest that variation in metabolic markers of diabetes across patterns of weight gain is masked by a homogeneous classification of weight gain.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-014-3284-y) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Bivariate genetic association of KIAA1797 with heart rate in American Indians: the Strong Heart Family Study

    No full text
    Heart rate (HR) has been identified as a risk factor for cardiovascular disease (CVD), yet little is known regarding genetic factors influencing this phenotype. Previous research in American Indians (AIs) from the Strong Heart Family Study (SHFS) identified a significant quantitative trait locus (QTL) for HR on chromosome 9p21. Genetic association on HR was conducted in the SHFS. HR was measured from electrocardiogram (ECG) and echocardiograph (Echo) Doppler recordings. We examined 2248 single-nucleotide polymorphisms (SNPs) on chromosome 9p21 for association using a gene-centric statistical test. We replicated the aforementioned QTL [logarithm of odds (LOD) = 4.83; genome-wide P= 0.0003] on chromosome 9p21 in one SHFS population using joint linkage of ECG and Echo HR. After correcting for effective number of SNPs using a gene-centric test, six SNPs (rs7875153, rs7848524, rs4446809, rs10964759, rs1125488 and rs7853123) remained significant. We applied a novel bivariate association method, which was a joint test of association of a single locus to two traits using a standard additive genetic model. The SNP, rs7875153, provided the strongest evidence for association (P = 7.14 × 10−6). This SNP (rs7875153) is rare (minor allele frequency = 0.02) in AIs and is located within intron 9 of the gene KIAA1797. To support this association, we applied lymphocyte RNA expression data from the San Antonio Family Heart Study, a longitudinal study of CVD in Mexican Americans. Expression levels of KIAA1797 were significantly associated (P = 0.012) with HR. These findings in independent populations support that KIAA1797 genetic variation may be associated with HR but elucidation of a functional relationship requires additional study
    corecore