20,420 research outputs found

    Reply to "Comment on 'A linear optics implementation of weak values in Hardy's paradox'"

    Full text link
    The comment by Lundeen et al. contains two criticisms of our proposal. While we agree that the state-preparation procedure could be replaced by a simpler setup as proposed by the authors of the comment, we do not agree with the authors on their second, and more important point regarding two-particle weak measurements. We believe this to be the result of a misunderstanding of our original paper.Comment: 2 pages, accepted in PR

    Linear optics implementation of weak values in Hardy's paradox

    Full text link
    We propose an experimental setup for the implementation of weak measurements in the context of the gedankenexperiment known as Hardy's Paradox. As Aharonov et al. showed, these weak values form a language with which the paradox can be resolved. Our analysis shows that this language is indeed consistent and experimentally testable. It also reveals exactly how a combination of weak values can give rise to an apparently paradoxical result.Comment: 4 pages, accepted by PR

    Identifiability of generalised Randles circuit models

    Full text link
    The Randles circuit (including a parallel resistor and capacitor in series with another resistor) and its generalised topology have widely been employed in electrochemical energy storage systems such as batteries, fuel cells and supercapacitors, also in biomedical engineering, for example, to model the electrode-tissue interface in electroencephalography and baroreceptor dynamics. This paper studies identifiability of generalised Randles circuit models, that is, whether the model parameters can be estimated uniquely from the input-output data. It is shown that generalised Randles circuit models are structurally locally identifiable. The condition that makes the model structure globally identifiable is then discussed. Finally, the estimation accuracy is evaluated through extensive simulations

    Work-based training and job prospects for the unemployed: an evaluation of training for work

    Get PDF
    "Training for Work (TfW) was a major DfEE programme aimed at helping people who had been claimant unemployed for over six months to find jobs and improve their skills, by providing appropriate training and work experience. After initial assessment and guidance, entrants took one of three main routes: employer placements (with either trainee or employed status), full-time off-the-job training, or project placements... A nationally representative sample of TfW participants in England and Wales who left TfW during the autumn of 1995 was interviewed in spring 1996 and a second time in summer 1997. The present analysis excluded those who had been unemployed for less than six months at the point of entry to the programme (the 'special needs' group)." - Page 1

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure

    Thoughts on Barnette's Conjecture

    Full text link
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let GG be a planar triangulation. Then the dual G∗G^* is a cubic 3-connected planar graph, and G∗G^* is bipartite if and only if GG is Eulerian. We prove that if the vertices of GG are (improperly) coloured blue and red, such that the blue vertices cover the faces of GG, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then G∗G^* is Hamiltonian. This result implies the following special case of Barnette's Conjecture: if GG is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then G∗G^* is Hamiltonian. Our final result highlights the limitations of using a proper colouring of GG as a starting point for proving Barnette's Conjecture. We also explain related results on Barnette's Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published.Comment: 12 pages, 7 figure
    • 

    corecore