767 research outputs found

    Monocarboxylate transporters in the brain and in cancer.

    Get PDF
    Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou

    Exposure to Maternal Diabetes Is Associated With Early Abnormal Vascular Structure in Offspring

    Get PDF
    Aim/hypothesis: In utero exposure to maternal diabetes increases the risk of developing hypertension and cardiovascular disorders during adulthood. We have previously shown that this is associated with changes in vascular tone in favor of a vasoconstrictor profile, which is involved in the development of hypertension. This excessive constrictor tone has also a strong impact on vascular structure. Our objective was to study the impact of in utero exposure to maternal diabetes on vascular structure and remodeling induced by chronic changes in hemodynamic parameters. Methods and Results: We used an animal model of rats exposed in utero to maternal hyperglycemia (DMO), which developed hypertension at 6 months of age. At a pre-hypertensive stage (3 months of age), we observed deep structural modifications of the vascular wall without any hemodynamic perturbations. Indeed, in basal conditions, resistance arteries of DMO rats are smaller than those of control mother offspring (CMO) rats; in addition, large arteries like thoracic aorta of DMO rats have an increase of smooth muscle cell attachments to elastic lamellae. In an isolated perfused kidney, we also observed a leftward shift of the flow/pressure relationship, suggesting a rise in renal peripheral vascular resistance in DMO compared to CMO rats. In this context, we studied vascular remodeling in response to reduced blood flow by in vivo mesenteric arteries ligation. In DMO rats, inward remodeling induced by a chronic reduction in blood flow (1 or 3 weeks after ligation) did not occur by contrast to CMO rats in which arterial diameter decreased from 428 ± 17 μm to 331 ± 20 μm (at 125 mmHg, p = 0.001). In these animals, the transglutaminase 2 (TG2) pathway, essential for inward remodeling development in case of flow perturbations, was not activated in low-flow (LF) mesenteric arteries. Finally, in old hypertensive DMO rats (18 months of age), we were not able to detect a pressure-induced remodeling in thoracic aorta. Conclusions: Our results demonstrate for the first time that in utero exposure to maternal diabetes induces deep changes in the vascular structure. Indeed, the early narrowing of the microvasculature and the structural modifications of conductance arteries could be a pre-emptive adaptation to fetal programming of hypertension

    Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system Y2x_{2-x}Cax_xBaNiO5_5

    Full text link
    Magnetization, DC and AC bulk susceptibility of the SS=1 Haldane chain system doped with electronic holes, Y2x_{2-x}Cax_xBaNiO5_5 (0\leqx\leq0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, χ(T)\chi (T)\sim TTα^{-\alpha}, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at TTg_g = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Dynamics and transport in random quantum systems governed by strong-randomness fixed points

    Get PDF
    We present results on the low-frequency dynamical and transport properties of random quantum systems whose low temperature (TT), low-energy behavior is controlled by strong disorder fixed points. We obtain the momentum and frequency dependent dynamic structure factor in the Random Singlet (RS) phases of both spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the Random Dimer (RD) and Ising Antiferromagnetic (IAF) phases of spin-1/2 random antiferromagnetic chains. We show that the RS phases are unusual `spin metals' with divergent low-frequency spin conductivity at T=0, and we also follow the conductivity through novel `metal-insulator' transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength of disorder in the spin-1 case. We work out the average spin and energy autocorrelations in the one-dimensional random transverse field Ising model in the vicinity of its quantum critical point. All of the above calculations are valid in the frequency dominated regime \omega \agt T, and rely on previously available renormalization group schemes that describe these systems in terms of the properties of certain strong-disorder fixed point theories. In addition, we obtain some information about the behavior of the dynamic structure factor and dynamical conductivity in the opposite `hydrodynamic' regime ω<T\omega < T for the special case of spin-1/2 chains close to the planar limit (the quantum x-y model) by analyzing the corresponding quantities in an equivalent model of spinless fermions with weak repulsive interactions and particle-hole symmetric disorder.Comment: Long version (with many additional results) of Phys. Rev. Lett. {\bf 84}, 3434 (2000) (available as cond-mat/9904290); two-column format, 33 pages and 8 figure

    Anomalous spectral weight in photoemission spectra of the hole doped Haldane chain Y2-xSrxBaNiO5

    Full text link
    In this paper, we present photoemission experiments on the hole doped Haldane chain compound Y2xSrxBaNiO5Y_{2-x}Sr_xBaNiO_5. By using the photon energy dependence of the photoemission cross section, we identified the symmetry of the first ionisation states (d type). Hole doping in this system leads to a significant increase in the spectral weight at the top of the valence band without any change in the vicinity of the Fermi energy. This behavior, not observed in other charge transfer oxides at low doping level, could result from the inhomogeneous character of the doped system and from a Ni 3d-O 2p hybridization enhancement due to the shortening of the relevant Ni-O distance in the localized hole-doped regions.Comment: 5 pages, 4 figure

    Understanding lactatemia in human sepsis potential impact for early management

    Get PDF
    Rationale: Hyperlactatemia in sepsis may derive from a prevalent impairment of oxygen supply/demand and/or oxygen use. Discriminating between these two mechanisms may be relevant for the early fluid resuscitation strategy. Objectives: To understand the relationship among central venous oxygen saturation (ScvO2), lactate, and base excess to better determine the origin of lactate. Methods: This was a post hoc analysis of baseline variables of 1,741 patients with sepsis enrolled in the multicenter trial ALBIOS (Albumin ItalianOutcome Sepsis). Variableswere analyzed as a function of sextiles of lactate concentration and sextiles of ScvO2.Wedefined the "alactic base excess," as the sum of lactate and standard base excess. Measurements and Main Results: Organ dysfunction severity scores, physiologic variables of hepatic, metabolic, cardiac, and renal function, and 90-day mortality were measured. ScvO2 was lower than 70% only in 35% of patients. Mortality, organ dysfunction scores, and lactate were highest in the first and sixth sextiles of ScvO2. Although lactate level related strongly to mortality, it was associated with acidemia only when kidney function was impaired (creatinine &gt;2 mg/dl), as rapidly detected by a negative alactic base excess. In contrast, positive values of alactic base excess were associated with a relative reduction of fluid balance. Conclusions: Hyperlactatemia is powerfully correlated with severity of sepsis and, in established sepsis, is caused more frequently by impaired tissue oxygen use, rather than by impaired oxygen transport. Concomitant acidemia was only observed in the presence of renal dysfunction, as rapidly detected by alactic base excess. The current strategy of fluid resuscitation could be modified according to the origin of excess lactate
    corecore