16 research outputs found

    Proposal of a quantitative PCR-based protocol for an optimal Pseudomonas aeruginosa detection in patients with cystic fibrosis

    Get PDF
    BACKGROUND: The lung of patients with cystic fibrosis (CF) is particularly sensitive to Pseudomonas aeruginosa. This bacterium plays an important role in the poor outcome of CF patients. During the disease progress, first acquisition of P. aeruginosa is the key-step in the management of CF patients. Quantitative PCR (qPCR) offers an opportunity to detect earlier the first acquisition of P. aeruginosa by CF patients. Given the lack of a validated protocol, our goal was to find an optimal molecular protocol for detection of P. aeruginosa in CF patients. METHODS: We compared two formerly described qPCR formats in early detection of P. aeruginosa in CF sputum samples: a qPCR targeting oprL gene, and a multiplex PCR targeting gyrB and ecfX genes. RESULTS: Tested in vitro on a large panel of P. aeruginosa isolates and others gram-negative bacilli, oprL qPCR exhibited a better sensitivity (threshold of 10 CFU/mL versus 730 CFU/mL), whereas the gyrB/ecfX qPCR exhibited a better specificity (90% versus 73%). These results were validated ex vivo on 46 CF sputum samples positive for P. aeruginosa in culture. Ex vivo assays revealed that qPCR detected 100 times more bacterial cells than culture-based method did. CONCLUSION: Based on these results, we proposed a reference molecular protocol combining the two qPCRs, which offers a sensitivity of 100% with a threshold of 10 CFU/mL and a specificity of 100%. This combined qPCR-based protocol can be adapted and used for other future prospective studies

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Fatal congenital tuberculosis due to a Beijing strain in a premature neonate.

    No full text
    International audienceCongenital tuberculosis (TB) remains a rare disease but is fatal if untreated. Early detection is difficult because of the non-specific nature of the symptoms in TB during pregnancy and infancy. This report summarizes a case of congenital TB in a very premature infant, born at 25 weeks gestation. Miliary TB was diagnosed in the mother when the neonate was 20 days old. Antituberculous therapy allowed a rapid improvement in the mother. The infant died at 27 days old. A Beijing genotype strain of Mycobacterium tuberculosis was isolated both in the mother, from pulmonary and urine specimens, and in the infant, from peritoneal fluid

    Both microbiological surveillance and audit of procedures improve reprocessing of flexible bronchoscopes and patient safety

    No full text
    International audienceAbstract Background: Microbiological surveillance of bronchoscopes and automatic endoscope reprocessors (AERs)/washer disinfectors as a quality control measure is controversial. Experts also are divided on the infection risks associated with bronchoscopic procedures. Objective: We evaluated the impact of routine microbiological surveillance and audits of cleaning/disinfection practices on contamination rates of reprocessed bronchoscopes. Design: Audits were conducted of reprocessing procedures and microbiological surveillance on all flexible bronchoscopes used from January 2007 to June 2020 at a teaching hospital in France. Contamination rates per year were calculated and analyzed using a Poisson regression model. The risk factors for microbiological contamination were analyzed using a multivariable logistical regression model. Results: In total, 478 microbiological tests were conducted on 91 different bronchoscopes and 57 on AERs. The rate of bronchoscope contamination significantly decreased between 2007 and 2020, varying from 30.2 to 0% ( P < .0001). Multivariate analysis confirmed that retesting after a previous contaminated test was significantly associated with higher risk of bronchoscope contamination (OR, 2.58; P = .015). This finding was explained by the persistence of microorganisms in bronchoscopes despite repeated disinfections. However, the risk of persistent contamination was not associated with the age of the bronchoscope. Conclusions: Our results confirm that bronchoscopes can remain contaminated despite repeated reprocessing. Routine microbial testing of bronchoscopes for quality assurance and audit of decontamination and disinfection procedures can improve the reprocessing of bronchoscopes and minimize the rate of persistent contamination

    Priming with intranasal lactobacilli prevents Pseudomonas aeruginosa acute pneumonia in mice

    No full text
    Abstract Background Increasing resistance to antibiotics of Pseudomonas aeruginosa leads to therapeutic deadlock and alternative therapies are needed. We aimed to evaluate the effects of Lactobacillus clinical isolates in vivo, through intranasal administration on a murine model of Pseudomonas aeruginosa pneumonia. Results We screened in vitro 50 pulmonary clinical isolates of Lactobacillus for their ability to decrease the synthesis of two QS dependent-virulence factors (elastase and pyocyanin) produced by Pseudomonas aeruginosa strain PAO1. Two blends of three Lactobacillus isolates were then tested in vivo: one with highly effective anti-PAO1 virulence factors properties (blend named L.rff for L. rhamnosus, two L. fermentum strains), and the second with no properties (blend named L.psb, for L. paracasei, L. salivarius and L. brevis). Each blend was administered intranasally to mice 18 h prior to PAO1 pulmonary infection. Animal survival, bacterial loads, cytological analysis, and cytokines secretion in the lungs were evaluated at 6 or 24 h post infection with PAO1. Intranasal priming with both lactobacilli blends significantly improved 7-day mice survival from 12% for the control PAO1 group to 71 and 100% for the two groups receiving L.rff and L.psb respectively. No mortality was observed for both control groups receiving either L.rff or L.psb. Additionally, the PAO1 lung clearance was significantly enhanced at 24 h. A 2-log and 4-log reduction was observed in the L.rff + PAO1 and L.psb + PAO1 groups respectively, compared to the control PAO1 group. Significant reductions in neutrophil recruitment and proinflammatory cytokine and chemokine secretion were observed after lactobacilli administration compared to saline solution, whereas IL-10 production was increased. Conclusions These results demonstrate that intranasal priming with lactobacilli acts as a prophylaxis, and avoids fatal complications caused by Pseudomonas aeruginosa pneumonia in mice. These results were independent of in vitro anti-Pseudomonas aeruginosa activity on QS-dependent virulence factors. Further experiments are required to identify the immune mechanism before initiating clinical trials
    corecore