180 research outputs found

    Does training-induced orthostatic hypotension result from reduced carotid baroreflex responsiveness?

    Get PDF
    As manned space travel has steadily increased in duration and sophistication, the answer to a simple, relevant question remains elusive. Does endurance exercise training - high intensity rhythmic activity, performed regularly for extended periods of time - alter the disposition to, or severity of, postflight orthostatic hypotension? Research results continue to provide different views; however, data are difficult to compare because of the following factors that vary between investigations: the type of orthostatic stress imposed (+Gz, lower body negative pressure (LBNP), head-up tilt); pretest perturbations used (exercise, heat exposure, head-down tilting, bed rest, water immersion, hypohydration, pharmacologically-induced diuresis); the length of the training program used in longitudinal investigations (days versus weeks versus months); the criteria used to define fitness; and the criteria used to define orthostatic tolerance. Generally, research results indicate that individuals engaged in aerobic exercise activities for a period of years have been reported to have reduced orthostatic tolerance compared to untrained control subjects, while the results of shorter term longitudinal studies remain equivocal. Such conclusions suggest that chronic athletic training programs reduce orthostatic tolerance, whereas relatively brief (days to weeks) training programs do not affect orthostatic tolerance to any significant degree (increase or decrease). A primary objective was established to identify the alterations in blood pressure control that contribute to training-induced orthostatic hypotension (TIOH). Although any aspect of blood pressure regulation is suspect, current research has been focused on the baroreceptor system. Reductions in carotid baroreflex responsiveness have been documented in exercise-trained rabbits, reportedly due to an inhibitory influence from cardiac afferent, presumably vagal, nerve fibers that is abolished with intrapericardiac denervation. The purpose of this investigation was to attempt to determine if similar relationships existed in men with varied levels of fitness, using maximal aerobic power, VO2 max, as the marker of fitness

    Bosonic Description of Spinning Strings in 2+12+1 Dimensions

    Get PDF
    We write down a general action principle for spinning strings in 2+1 dimensional space-time without introducing Grassmann variables. The action is written solely in terms of coordinates taking values in the 2+1 Poincare group, and it has the usual string symmetries, i.e. it is invariant under a) diffeomorphisms of the world sheet and b) Poincare transformations. The system can be generalized to an arbitrary number of space-time dimensions, and also to spinning membranes and p-branes.Comment: Latex, 12 page

    Deforming baryons into confining strings

    Full text link
    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1{\mathcal{N}}=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.Comment: 1+13 pages. LaTeX. 3 Figures. Factor of 2N fixed to N for the IIA background. Minor changes to tex

    Coulomb-gas formulation of SU(2) branes and chiral blocks

    Full text link
    We construct boundary states in SU(2)kSU(2)_k WZNW models using the bosonized Wakimoto free-field representation and study their properties. We introduce a Fock space representation of Ishibashi states which are coherent states of bosons with zero-mode momenta (boundary Coulomb-gas charges) summed over certain lattices according to Fock space resolution of SU(2)kSU(2)_k. The Virasoro invariance of the coherent states leads to families of boundary states including the B-type D-branes found by Maldacena, Moore and Seiberg, as well as the A-type corresponding to trivial current gluing conditions. We then use the Coulomb-gas technique to compute exact correlation functions of WZNW primary fields on the disk topology with A- and B-type Cardy states on the boundary. We check that the obtained chiral blocks for A-branes are solutions of the Knizhnik-Zamolodchikov equations.Comment: 14 pages, 3 figures, revtex4. Essentially the published versio

    Entropy Function for Non-extremal D1D5 and D2D6NS5-branes

    Full text link
    We apply the entropy function formalism to non-extremal D1D5 and D2D6NS5-branes whose throat approximation is given by the Schwarzschild black hole in AdS_3\times S^3\times T^4 and AdS_3\times S^2\times S^1\times T^4, respectively. We find the Bekenstein-Hawking entropy and the (alpha')^3R^4 corrections from the value of the entropy function at its saddle point. While the higher derivative terms have no effect on the temperature, they decrease the value of the entropy.Comment: 17 Pages, Latex file; Minor additions, version published in JHE

    Orthopaedic surgeons display a positive outlook towards artificial intelligence: A survey among members of the AGA Society for Arthroscopy and Joint Surgery.

    Get PDF
    PURPOSE The purpose of this study was to evaluate the perspective of orthopaedic surgeons on the impact of artificial intelligence (AI) and to evaluate the influence of experience, workplace setting and familiarity with digital solutions on views on AI. METHODS Orthopaedic surgeons of the AGA Society for Arthroscopy and Joint Surgery were invited to participate in an online, cross-sectional survey designed to gather information on professional background, subjective AI knowledge, opinion on the future impact of AI, openness towards different applications of AI, and perceived advantages and disadvantages of AI. Subgroup analyses were performed to examine the influence of experience, workplace setting and openness towards digital solutions on perspectives towards AI. RESULTS Overall, 360 orthopaedic surgeons participated. The majority indicated average (43.6%) or rudimentary (38.1%) AI knowledge. Most (54.5%) expected AI to substantially influence orthopaedics within 5-10 years, predominantly as a complementary tool (91.1%). Preoperative planning (83.8%) was identified as the most likely clinical use case. A lack of consensus was observed regarding acceptable error levels. Time savings in preoperative planning (62.5%) and improved documentation (81%) were identified as notable advantages while declining skills of the next generation (64.5%) were rated as the most substantial drawback. There were significant differences in subjective AI knowledge depending on participants' experience (p = 0.021) and familiarity with digital solutions (p < 0.001), acceptable error levels depending on workplace setting (p = 0.004), and prediction of AI impact depending on familiarity with digital solutions (p < 0.001). CONCLUSION The majority of orthopaedic surgeons in this survey anticipated a notable positive impact of AI on their field, primarily as an assistive technology. A lack of consensus on acceptable error levels of AI and concerns about declining skills among future surgeons were observed. LEVEL OF EVIDENCE Level IV, cross-sectional study

    Towards Detecting High-Uptake Lesions from Lung CT Scans Using Deep Learning

    Get PDF
    Automatic detection of lung lesions from computed tomography (CT) and positron emission tomography (PET) is an important task in lung cancer diagnosis. While CT scans make it possible to retrieve structural information, PET images reveal the functional aspects of the tissue, hence combined PET/CT imagery allows for detecting metabolically active lesions. In this paper, we explore how to exploit deep convolutional neural networks to identify the active tumour tissue exclusively from CT scans, which, to the best of our knowledge, has not been attempted yet. Our experimental results are very encouraging and they clearly indicate the possibility of detecting lesions with high glucose uptake, which could increase the utility of CT in lung cancer diagnosis

    Plasma photoemission from string theory

    Full text link
    Leading 't Hooft coupling corrections to the photoemission rate of the planar limit of a strongly-coupled {\cal {N}}=4 SYM plasma are investigated using the gauge/string duality. We consider the full order \alpha'^3 type IIB string theory corrections to the supergravity action, including higher order terms with the Ramond-Ramond five-form field strength. We extend our previous results presented in arXiv:1110.0526. Photoemission rates depend on the 't Hooft coupling, and their curves suggest an interpolating behaviour from strong towards weak coupling regimes. Their slopes at zero light-like momentum give the electrical conductivity as a function of the 't Hooft coupling, in full agreement with our previous results of arXiv:1108.6306. Furthermore, we also study the effect of corrections beyond the large N limit.Comment: 36 pages, 5 figures, paragraph added in the conclusions, references added, typos correcte

    N = 2 SCFTs: An M5-brane perspective

    Full text link
    Inspired by the recently discovered holographic duality between N=2 SCFTs and half-BPS M-theory backgrounds, we study probe M5-branes. Though our main focus is supersymmetric M5-branes whose worldvolume has an AdS_n factor, we also consider some other configurations. Of special mention is the identification of AdS_5 and AdS_3 probes preserving supersymmetry, with only the latter supporting a self-dual field strength.Comment: 27 page

    Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their “Stemness”

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPION) are increasingly used to label human bone marrow stromal cells (BMSCs, also called “mesenchymal stem cells”) to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB) staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the “stemness” of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the “gold standard” of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs
    • …
    corecore