22 research outputs found

    Measurement of Seafloor Acoustic Backscatter Angular Dependence at 150 kHz Using a Multibeam Echosounder

    Get PDF
    Acoustic seafloor measurements with multibeam echosounders (MBESs) are currently often used for submarine habitat mapping, but the MBESs are usually not acoustically calibrated for backscattering strength (BBS) and cannot be used to infer absolute seafloor angular dependence. We present a study outlining the calibration and showing absolute backscattering strength values measured at a frequency of 150 kHz at around 10–20 m water depth. After recording bathymetry, the co-registered backscattering strength was corrected for true incidence and footprint reverberation area on a rough and tilted seafloor. Finally, absolute backscattering strength angular response curves (ARCs) for several seafloor types were constructed after applying sonar backscattering strength calibration and specific water column absorption for 150 kHz correction. Thus, we inferred specific 150 kHz angular backscattering responses that can discriminate among very fine sand, sandy gravel, and gravelly sand, as well as between bare boulders and boulders partially overgrown by red algae, which was validated by video ground-truthing. In addition, we provide backscatter mosaics using our algorithm (BBS-Coder) to correct the angle varying gain (AVG). The results of the work are compared and discussed with the published results of BBS measurements in the 100–400 kHz frequency range. The presented results are valuable in extending the very sparse angular response curves gathered so far and could contribute to a better understanding of the dependence of backscattering on the type of bottom habitat and improve their acoustic classificatio

    Impact of the economic crisis on social, economic and territorial cohesion of the European Union

    No full text
    The impact of the economic and financial crisis that started in 2008 is still being felt. In November 2008, the European Commission launched a European Economic Recovery Plan with a view to coordinate Member States’ action in response to the crisis. In this context, the Study uses a combination of quantitative and qualitative methods in order to provide an overview of the impact of the crisis across four Member States and eight regions, in terms of economic, social and territorial cohesion, and to assess the responses of cohesion policy to counteract the crisis

    Nearshore Benthic Habitat Mapping Based on Multi-Frequency, Multibeam Echosounder Data Using a Combined Object-Based Approach: A Case Study from the Rowy Site in the Southern Baltic Sea

    No full text
    Recently, the rapid development of the seabed mapping industry has allowed researchers to collect hydroacoustic data in shallow, nearshore environments. Progress in marine habitat mapping has also helped to distinguish the seafloor areas of varied acoustic properties. As a result of these new developments, we have collected a multi-frequency, multibeam echosounder dataset from the valuable nearshore environment of the southern Baltic Sea using two frequencies: 150 kHz and 400 kHz. Despite its small size, the Rowy area is characterized by diverse habitat conditions and the presence of red algae, unique on the Polish coast of the Baltic Sea. This study focused on the utilization of multibeam bathymetry and multi-frequency backscatter data to create reliable maps of the seafloor. Our approach consisted of the extraction of 70 secondary features of bathymetric and backscatter data, including statistic and textural attributes of different scales. Based on ground-truth samples, we have identified six habitat classes and selected the most relevant features of the bathymetric and backscatter data. Additionally, five types of image processing pixel-based and object-based classifiers were tested. We also evaluated the performance of algorithms using an accuracy assessment based on the validation subset of the ground-truth samples. Our best results reached 93% overall accuracy and a kappa coefficient of 0.90, confirming that nearshore seabed habitats can be accurately distinguished based on multi-frequency, multibeam echosounder measurements. Our predictive habitat mapping of shallow euphotic zones creates a new scientific perspective and provides relevant data for the management of natural resources. Object-based approaches previously used in various environments and areas suggest that methodology presented in this study may be scalable

    IMPROVED LIGAND GEOMETRIES IN CRYSTALLOGRAPHIC REFINEMENT USING AFITT IN PHENIX

    No full text
    Modern crystal refinement programs rely on geometry restraints to overcome the challenge of a low data to parameter ratio. While the classical Engh & Huber restraints work well for standard residues, the chemical complexity of ligands and small molecules presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that lengthen refinement times and hinder automated refinement workflows. We present the results of combining AFITT and the Phenix software suite, which together generate more chemically accurate models for small molecules. A Phenix-AFITT refinement uses a full molecular mechanics force field for ligands during refinement. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, thus making it ideal for high throughput workflows. Phenix-AFITT refinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Refinements using AFITT significantly reduce ligand energies and lead to improved geometries without detriment to R-free factors

    Peptide Crystal Simulations Reveal Hidden Dynamics

    No full text
    Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in X-ray diffraction data. We present here 9.6 μs of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom RMSD; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom RMSD. The <i>R</i>-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The <i>B</i>-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but <i>B</i>-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 3<sub>10</sub> helical propensity and a <i>gauche</i>(-) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data as well as to validate computational chemistry methods
    corecore