331 research outputs found

    On local fixed or periodic point properties

    Full text link
    A space X has the local fixed point property LFPP, (local periodic point property LPPP) if it has an open basis B\mathcal{B} such that, for each BBB\in \mathcal{B}, the closure B\overline{B} has the fixed (periodic) point property. Weaker versions wLFPP, wLPPP are also considered and examples of metric continua that distinguish all these properties are constructed. We show that for planar or one-dimensional locally connected metric continua the properties are equivalent

    Approximation in quantale-enriched categories

    Full text link
    Our work is a fundamental study of the notion of approximation in V-categories and in (U,V)-categories, for a quantale V and the ultrafilter monad U. We introduce auxiliary, approximating and Scott-continuous distributors, the way-below distributor, and continuity of V- and (U,V)-categories. We fully characterize continuous V-categories (resp. (U,V)-categories) among all cocomplete V-categories (resp. (U,V)-categories) in the same ways as continuous domains are characterized among all dcpos. By varying the choice of the quantale V and the notion of ideals, and by further allowing the ultrafilter monad to act on the quantale, we obtain a flexible theory of continuity that applies to partial orders and to metric and topological spaces. We demonstrate on examples that our theory unifies some major approaches to quantitative domain theory.Comment: 17 page

    Chasing robbers on random geometric graphs---an alternative approach

    Full text link
    We study the vertex pursuit game of \emph{Cops and Robbers}, in which cops try to capture a robber on the vertices of the graph. The minimum number of cops required to win on a given graph GG is called the cop number of GG. We focus on Gd(n,r)G_{d}(n,r), a random geometric graph in which nn vertices are chosen uniformly at random and independently from [0,1]d[0,1]^d, and two vertices are adjacent if the Euclidean distance between them is at most rr. The main result is that if r3d1>cdlognnr^{3d-1}>c_d \frac{\log n}{n} then the cop number is 11 with probability that tends to 11 as nn tends to infinity. The case d=2d=2 was proved earlier and independently in \cite{bdfm}, using a different approach. Our method provides a tight O(1/r2)O(1/r^2) upper bound for the number of rounds needed to catch the robber.Comment: 6 page

    Acquaintance time of random graphs near connectivity threshold

    Full text link
    Benjamini, Shinkar, and Tsur stated the following conjecture on the acquaintance time: asymptotically almost surely AC(G)p1logO(1)nAC(G) \le p^{-1} \log^{O(1)} n for a random graph GG(n,p)G \in G(n,p), provided that GG is connected. Recently, Kinnersley, Mitsche, and the second author made a major step towards this conjecture by showing that asymptotically almost surely AC(G)=O(logn/p)AC(G) = O(\log n / p), provided that GG has a Hamiltonian cycle. In this paper, we finish the task by showing that the conjecture holds in the strongest possible sense, that is, it holds right at the time the random graph process creates a connected graph. Moreover, we generalize and investigate the problem for random hypergraphs

    Generalised Pattern Matching Revisited

    Get PDF
    In the problem of Generalised Pattern Matching (GPM)\texttt{Generalised Pattern Matching}\ (\texttt{GPM}) [STOC'94, Muthukrishnan and Palem], we are given a text TT of length nn over an alphabet ΣT\Sigma_T, a pattern PP of length mm over an alphabet ΣP\Sigma_P, and a matching relationship ΣT×ΣP\subseteq \Sigma_T \times \Sigma_P, and must return all substrings of TT that match PP (reporting) or the number of mismatches between each substring of TT of length mm and PP (counting). In this work, we improve over all previously known algorithms for this problem for various parameters describing the input instance: * D\mathcal{D}\, being the maximum number of characters that match a fixed character, * S\mathcal{S}\, being the number of pairs of matching characters, * I\mathcal{I}\, being the total number of disjoint intervals of characters that match the mm characters of the pattern PP. At the heart of our new deterministic upper bounds for D\mathcal{D}\, and S\mathcal{S}\, lies a faster construction of superimposed codes, which solves an open problem posed in [FOCS'97, Indyk] and can be of independent interest. To conclude, we demonstrate first lower bounds for GPM\texttt{GPM}. We start by showing that any deterministic or Monte Carlo algorithm for GPM\texttt{GPM} must use Ω(S)\Omega(\mathcal{S}) time, and then proceed to show higher lower bounds for combinatorial algorithms. These bounds show that our algorithms are almost optimal, unless a radically new approach is developed

    Meyniel's conjecture holds for random graphs

    Full text link
    In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph GG is called the cop number of GG. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant CC, the cop number of every connected graph GG is at most CV(G)C \sqrt{|V(G)|}. In this paper, we show that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. We do this by first showing that the conjecture holds for a general class of graphs with some specific expansion-type properties. This will also be used in a separate paper on random dd-regular graphs, where we show that the conjecture holds asymptotically almost surely when d=d(n)3d = d(n) \ge 3.Comment: revised versio

    Higher-Order Nonemptiness Step by Step

    Get PDF
    We show a new simple algorithm that checks whether a given higher-order grammar generates a nonempty language of trees. The algorithm amounts to a procedure that transforms a grammar of order n to a grammar of order n-1, preserving nonemptiness, and increasing the size only exponentially. After repeating the procedure n times, we obtain a grammar of order 0, whose nonemptiness can be easily checked. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation (and hence the whole algorithm) is linear in the size of the grammar, assuming that the arity of employed nonterminals is bounded by a constant. The same algorithm allows to check whether an infinite tree generated by a higher-order recursion scheme is accepted by an alternating safety (or reachability) automaton, because this question can be reduced to the nonemptiness problem by taking a product of the recursion scheme with the automaton. A proof of correctness of the algorithm is formalised in the proof assistant Coq. Our transformation is motivated by a similar transformation of Asada and Kobayashi (2020) changing a word grammar of order n to a tree grammar of order n-1. The step-by-step approach can be opposed to previous algorithms solving the nonemptiness problem "in one step", being compulsorily more complicated

    Implications of Dividend Announcements for the Stock Prices and Trading Volumes of DAX Companies (in English)

    Get PDF
    This paper deals with market reactions to dividend announcements on the German stock market. Our study is based on a model of expected dividends with regard to the reluctance-to-change-dividends hypothesis. State-of-the-art models are used to detect price and volume reactions to dividend news. Empirical results provide evidence that announced dividend changes convey new information to the market. On average, stock prices move in the same direction as dividends. One can observe an increase in stock-return volatility in anticipation of expected news. For the entire sample, we find that trading volumes exhibit significant increases around dividend announcement dates. This supports the hypothesis that dividend change in either direction causes an increase in investors’ propensity to revise their portfolios.abnormal stock returns; dividend announcements; GARCH modeling; trading volume

    Higher-Order Model Checking Step by Step

    Get PDF
    We show a new simple algorithm that solves the model-checking problem for recursion schemes: check whether the tree generated by a given higher-order recursion scheme is accepted by a given alternating parity automaton. The algorithm amounts to a procedure that transforms a recursion scheme of order n to a recursion scheme of order n-1, preserving acceptance, and increasing the size only exponentially. After repeating the procedure n times, we obtain a recursion scheme of order 0, for which the problem boils down to solving a finite parity game. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation is linear in the size of the recursion scheme, assuming that the arity of employed nonterminals and the size of the automaton are bounded by a constant; this results in an FPT algorithm for the model-checking problem. Our transformation is a generalization of a previous transformation of the author (2020), working for reachability automata in place of parity automata. The step-by-step approach can be opposed to previous algorithms solving the considered problem "in one step", being compulsorily more complicated

    Security and Privacy in RFID Applications

    Get PDF
    Concerns about privacy and security may limit the deployment of RFID technology and its benefits, therefore it is important they are identified and adequately addressed. System developers and other market actors are aware of the threats and are developing a number of counter measures. RFID systems can never be absolutely secure but effort needs to be made to ensure a proper balance between the risks and the costs of counter measures. The approach taken to privacy and security should depend on the application area and the context of a specific application. In this chapter, we selected and discussed four application areas, but there are many others where privacy and security issues are relevant.JRC.J.4-Information Societ
    corecore