research

Meyniel's conjecture holds for random graphs

Abstract

In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph GG is called the cop number of GG. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant CC, the cop number of every connected graph GG is at most CV(G)C \sqrt{|V(G)|}. In this paper, we show that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. We do this by first showing that the conjecture holds for a general class of graphs with some specific expansion-type properties. This will also be used in a separate paper on random dd-regular graphs, where we show that the conjecture holds asymptotically almost surely when d=d(n)3d = d(n) \ge 3.Comment: revised versio

    Similar works

    Full text

    thumbnail-image

    Available Versions