96 research outputs found

    Unbiased Spontaneous Solar Fuel Production using Stable LaFeO3 Photoelectrode

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Photoelectrochemical (PEC) water splitting to produce solar fuel (hydrogen) has long been considered as the Holy Grail to a carbon-free hydrogen economy. The PEC concept to produce solar fuel is to emulate the natural photosynthesis using man made materials. The bottle-neck in realising the concept practically has been the difficulty in identifying stable low-cost semiconductors that meet the thermodynamic and kinetic criteria for photoelectrolysis. We have fabricated a novel p-type LaFeO3photoelectrode using an inexpensive and scalable spray pyrolysis method. Our nanostructured LaFeO3photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied. Moreover, the photoelectrode has a faradaic efficiency of 30% and showed excellent stability over 21 hours. From optical and impedance data, the constructed band diagram showed that LaFeO3can straddle the water redox potential with the conduction band at -1.11 V above the reduction potential of hydrogen. We have fabricated a low cost LaFeO3photoelectrode that can spontaneously produce hydrogen from water using sunlight, making it a strong future candidate for renewable hydrogen generation.We acknowledge EPSRC-DTP for Ph D student ship to GSP. The financial support was provided by Engineering and Physical Science Research Council, UK (EPSRC) under the research grant No EP/P510956/1 and EP/R512801/1. We also acknowledge UKIERI-DST2016-17-0089 project for partly funding the present work. NSG Pilkington Glass Ltd. is acknowledged for kindly providing the FTO substrates for this work. The funders had no role in study design, data collection and analysis or preparation of the manuscript

    Air ion variation at Poultry-farm, coastal, mountain, rural and urban sites in India

    Get PDF
    The air ions are continuously generated and destroyed by various processes in the atmosphere. Near the surface, the nature of ions is very complex and they show large variations in their physical properties. The attachment of small ions to the aerosol particles is depending on the mobility of air ions. High mobility air ions immediately are attached to the aerosol particles and settle down on the surface. In this study we report, about the air ion variation at different sites like Rural, Coastal, Mountain, Poultry farm and urban in the state of Maharashtra in India. The aim of this study is to understand the plausible distribution of air ions both diurnally and at different times in a day for long time (three years) and with various meteorological variables. The preliminary analysis of the data has reveled that negative air ions are observed to have attached to the aerosol particles and large aerosol particles are formed from small aerosol particles. Therefore uni-polarity factor observed to be below unity for coastal, mountain and rural site and about 2.8 at an urban site. However worst case is observed at the Poultry farm, where uni-polarity factor is 6.3, which is very harmful for human health. There is also effect of meteorological parameters on air ion concentration in the atmosphere

    Diurnal and seasonal air ion variability at rural station Ramanandnagar (17A°2'N, 74A°E), India

    Get PDF
    High-energy radiations, such as alpha and beta particles or gamma radiation, ionize air molecules into pairs of positive ions and free electrons. The diurnal and seasonal variations of these air ions were measured for the first time at a rural monitoring station in Ramanandnagar (17°2'N, 74°E), India, and the urban tropical station in Pune (18°31'N, 73°55'E) from June 2007 to May 2008. Air ion concentrations, measured using a Gerdien condenser at Pune station, increased from nighttime and reached maximum in the early morning. Compared to Pune, air ion concentration and positive-to-negative air ion ratios at Ramanandnagar increased from morning and reach maximum in the afternoon (12:00-14:00). Plant transpiration and waves in the flooded Krishna River during July-September 2007 were determined as additional sources of atmospheric ion production at Ramanandnagar. Intensive temperature inversion during winter lead to the accumulation of radon and radioactive aerosols near the Earth's surface, and hence increased the rate of ionization. Annual peaks of positive/negative ion maxima and positive-to-negative small ion ratios were observed in January 2008. It was also observed that as human activities increased, more aerosol particles were introduced into the atmosphere between 12:00-14:00 hours, during which time the average positive-to-negative air ion ratio reached peak values. During summer, radioactive gases moved upward, carrying radon and radioactive aerosols, and thereby reducing ionization. Results show a decrease in average positive and negative small ion maxima from February 2008 to May 2008

    Recovery of frog and lizard communities following primary habitat alteration in Mizoram, Northeast India

    Get PDF
    Background Community recovery following primary habitat alteration can provide tests for various hypotheses in ecology and conservation biology. Prominent among these are questions related to the manner and rate of community assembly after habitat perturbation. Here we use space-for-time substitution to analyse frog and lizard community assembly along two gradients of habitat recovery following slash and burn agriculture (jhum) in Mizoram, Northeast India. One recovery gradient undergoes natural succession to mature tropical rainforest, while the other involves plantation of jhum fallows with teak Tectona grandis monoculture. Results Frog and lizard communities accumulated species steadily during natural succession, attaining characteristics similar to those from mature forest after 30 years of regeneration. Lizards showed higher turnover and lower augmentation of species relative to frogs. Niche based classification identified a number of guilds, some of which contained both frogs and lizards. Successional change in species richness was due to increase in the number of guilds as well as the number of species per guild. Phylogenetic structure increased with succession for some guilds. Communities along the teak plantation gradient on the other hand, did not show any sign of change with chronosere age. Factor analysis revealed independent sets of habita variables that determined changes in community and guild composition during habitat recovery. Conclusions The timescale of frog and lizard community recovery was comparable with that reported by previous studies on different faunal groups in other tropical regions. Both communities converged on primary habitat attributes during natural vegetation succession, the recovery being driven by deterministic, nonlinear changes in habitat characteristics. On the other hand, very little faunal recovery was seen even in relatively old teak stands. Generally, tree monocultures are unlikely to support recovery of natural forest communities and the combined effect of shortened jhum cultivation cycles and plantation forestry could result in landscapes without mature forest. Lack of source pools of genetic diversity will then lead to altered vegetation succession and faunal community reassembly. It is therefore important that the value of habitat mosaics containing even patches of primary forest and successional secondary habitats be taken into accoun

    Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications - A correlational study

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Porous ZnO/C nanocomposites derived from 3 different Zinc based metal-organic frameworks (MOFs) including MOF-5, MOF-74 and ZIF-8, were prepared at high temperature under water-steam atmosphere and their performances in photocatalytic H 2 evolution reaction (HER) and photodegradation of organic dye pollutants were evaluated. The formation mechanism from MOF precursors, the structural properties, morphologies, compositions and textural properties of the derived ZnO/C composites were fully investigated based on different characterization techniques and the correlation between the precursors and the derived composites was discussed. It is evident that MOF precursors determine the crystalline structures, doping profiles, thermal stabilities and metal oxide-carbon weight percentage ratios of the resulting composites. The correlation between MOFs and their derived nanocomposites indicates that different parameters play unalike roles in photocatalytic performances. The desired properties can be tuned by selecting appropriate MOF precursors. MOF-5 derived porous ZnO/C nanocomposite not only exhibits the highest photocatalytic dye degradation activity under visible light among these MOFs, but also outperforms those derived from MOF-74 and ZIF-8 up to 9 and 4 times in photocatalytic HER respectively. This study offers simple and environmentally friendly approaches to further develop new homogeneously dispersed functional metal oxide/carbon composites for various energy and environment-related applications.Engineering and Physical Sciences Research Council (EPSRC)European Commissio

    Enhanced photoactivity and hydrogen generation of LaFeO 3 photocathode by plasmonic silver nanoparticle incorporation

    Get PDF
    This is the author accepted manuscript. The final version is available from ACS via the DOI in this record.A plasmonic LaFeO3-Ag (LFO-Ag) photocathode was synthesised by incorporating Ag nanoparticles to excite surface plasmon resonances (SPR) for enhanced light harvesting to drive photoelectrochemical (PEC) hydrogen evolution. The Ag nanoparticles were modelled using finite difference time domain (FDTD) simulations and the results show an optimal dimension of 50-80 nm for SPR enhancement. Nanostructured LFO films were prepared by a novel and inexpensive spray pyrolysis method and the Ag nanoparticles were dispersed uniformly on to the films by simple spin coating method. The LFO-Ag photocathode exhibited strong light absorption capability and high current density, twice that than of its untreated counterpart. This subsequently led to enhanced PEC hydrogen evolution, doubling the volume of hydrogen generated compared to untreated LFO. The enhancement is ascribed to the strong SPR effect and the synergy between the Ag nanoparticles and nanostructured LFO photocathode.We acknowledge UKIERI-DST2016-17-0089 project and Engineering and Physical Science Research Council, UK (EPSRC) under the research grant EP/R512801/1 for financial support. A.E. and S.S. would like to thank the Council of Scientific and Industrial Research (CSIR) for the award of Senior Research Fellowship. NSG Pilkington Glass Ltd. is acknowledged for kindly providing the FTO substrates for this work

    Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and In Vivo Efficacy in the Plasmodium falciparum NSG Mouse Model

    Get PDF
    A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure–activity and structure–property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action

    Degradation of Internalized αvβ5 Integrin Is Controlled by uPAR Bound uPA: Effect on β1 Integrin Activity and α-SMA Stress Fiber Assembly

    Get PDF
    Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2–4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF
    • …
    corecore