853 research outputs found

    Mapping point data in geographic information systems

    Get PDF

    Tuning and improvements in a waypoint and trajectory tracking algorithm

    Get PDF

    Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective

    Get PDF
    Molecular response properties for ground and excited states and for transitions between these states are defined by solving the time-dependent Schr\uf6dinger equation for a molecular system in a field of a time-periodic perturbation. In equation of motion coupled cluster (EOM-CC) theory, molecular response properties are commonly obtained by replacing, in configuration interaction (CI) molecular response property expressions, the energies and eigenstates of the CI eigenvalue equation with the energies and eigenstates of the EOM-CC eigenvalue equation. We show here that EOM-CC molecular response properties are identical to the molecular response properties that are obtained in the coupled cluster\u2013configuration interaction (CC-CI) model, where the time-dependent Schr\uf6dinger equation is solved using an exponential (coupled cluster) parametrization to describe the unperturbed system and a linear (configuration interaction) parametrization to describe the time evolution of the unperturbed system. The equivalence between EOM-CC and CC-CI molecular response properties only holds when the CI molecular response property expressions\u2014from which the EOM-CC expressions are derived\u2014are determined using projection and not using the variational principle. In a previous article [F. Paw\u142owski, J. Olsen, and P. J\uf8rgensen, J. Chem. Phys. 142, 114109 (2015)], it was stated that the equivalence between EOM-CC and CC-CI molecular response properties only held for a linear response function, whereas quadratic and higher order response functions were mistakenly said to differ in the two approaches. Proving the general equivalence between EOM-CC and CC-CI molecular response properties is a challenging task, that is undertaken in this article. Proving this equivalence not only corrects the previous incorrect statement but also first and foremost leads to a new, time-dependent, perspective for understanding the basic assumptions on which the EOM-CC molecular response property expressions are founded. Further, the equivalence between EOM-CC and CC-CI molecular response properties highlights how static molecular response properties can be obtained from finite-field EOM-CC energy calculations

    Reduced live birth rates in frozen versus fresh single cleavage stage embryo transfer cycles: A cross-sectional study

    Get PDF
    Background: Studies have suggested that embryo-endometrial developmental asynchrony caused by slow-growing embryos can be corrected by freezing the embryo and transferring it back in a subsequent cycle. Therefore, we hypothesized that live birth rates (LBR) would be higher in frozen embryo transfer (FET) compared with fresh embryo transfers. Objective: To compare LBR between fresh and FET cycles. Materials and Methods: A cross-sectional analysis of 10,744 single autologous embryo transfer cycles that used a single cleavage-stage embryo was performed. Multivariate analysis was performed to compare LBR between FET and fresh cycles, after correcting for various confounding factors. Sub-analysis was also performed in cycles using slow embryos. Results: Both LBR (19.13% vs 14.13%) and clinical pregnancy (22.48% vs 16.25%) rates (CPR) were higher in the fresh cycle group (p < 0.00). Multivariate analysis for confounding factors also confirmed that women receiving a frozen-thawed embryo had a significantly lower LBR rate compared to those receiving a fresh embryo (OR 0.76, 95% CI 0.68-0.86, p < 0.00). In the sub-analysis of 1,154 cycles using slow embryos, there was no statistical difference in LBR (6.40% vs 6.26%, p = 0.92) or CPR (8.10% vs 7.22%, p = 0.58) between the two groups. Conclusion: This study shows a lower LBR in FET cycles when compared to fresh cycles. Our results suggest that any potential gains in LBR due to improved embryo-endometrial synchrony following FET are lost, presumably due to freeze-thaw process-related embryo damage. Key words: Fresh, Frozen embryo transfer, Live birth, Embryo, Transfer

    Carnobacterium: positive and negative effects in the environment and in foods

    Get PDF
    The genus Carnobacterium contains nine species, but only C. divergens and C. maltaromaticum are frequently isolated from natural environments and foods. They are tolerant to freezing/thawing and high pressure and able to grow at low temperatures, anaerobically and with increased CO2 concentrations. They metabolize arginine and various carbohydrates, including chitin, and this may improve their survival in the environment. Carnobacterium divergens and C. maltaromaticum have been extensively studied as protective cultures in order to inhibit growth of Listeria monocytogenes in fish and meat products. Several carnobacterial bacteriocins are known, and parameters that affect their production have been described. Currently, however, no isolates are commercially applied as protective cultures. Carnobacteria can spoil chilled foods, but spoilage activity shows intraspecies and interspecies variation. The responsible spoilage metabolites are not well characterized, but branched alcohols and aldehydes play a partial role. Their production of tyramine in foods is critical for susceptible individuals, but carnobacteria are not otherwise human pathogens. Carnobacterium maltaromaticum can be a fish pathogen, although carnobacteria are also suggested as probiotic cultures for use in aquaculture. Representative genome sequences are not yet available, but would be valuable to answer questions associated with fundamental and applied aspects of this important genus

    Direction of the association between body fatness and self-reported screen time in Dutch adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screen time has been associated with pediatric overweight. However, it is unclear whether overweight predicts or is predicted by excessive amounts of screen time. The aim of this study was to examine the direction of the association between screen time and body fatness in Dutch adolescents.</p> <p>Methods</p> <p>Longitudinal data of 465 Dutch adolescents (mean age at baseline 13 years, 53% boys) was used. Body fatness (objectively measured BMI, four skin folds and waist- and hip circumference), self-reported time spent watching TV and computer use, and aerobic fitness (shuttle run test) were assessed in all participants at three time points during 12 months. Multi-level linear autoregressive analyses was used to examine whether screen time predicted body fatness in the following time period and whether body fatness predicted screen time. Analyses were performed for boys and girls separately and adjusted for ethnicity and aerobic fitness.</p> <p>Results</p> <p>Time spent TV viewing did predict changes in BMI and hip circumference in boys, but not in girls, in the subsequent period. Computer time significantly predicted increases in skinfolds in boys and girls and increases in BMI in girls. Body fatness did not predict any changes in screen time.</p> <p>Conclusion</p> <p>The present study only partly supports the widely posited hypothesis that higher levels of screen time cause increases in body fatness. In addition, this study demonstrates that high levels of body fatness do not predict increases in screen time.</p
    • 

    corecore