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This paper deals with waypoint guidance and trajectory tracking of aircrafts. After
briefly introducing a previously published and a newly developed waypoint guidance strat-
egy (publishing real flight test results also), it makes a literature review. The goals of the
work are set based on this review. Considering these goals, the fine tuning of the newly de-
veloped algorithm is done first. Then linear and circular waypoint reachability maneuvers
are examined. It is pointed out that it is better to start to turn away from the waypoint if
it is unreachable then turn toward it if it becomes reachable. Finally, the article extends
the capabilities of the new algorithm to track given parametric spatial trajectories. This
extended capability is demonstrated in a simulation example.

I. Introduction

Aircraft waypoint guidance and trajectory tracking is an actual and important topic especially for UAVs
which should complete missions in limited space. Here, waypoint guidance means catching given reference
points with a given tolerance, trajectory tracking means flying along a given spatial path curve.

The authors are involved in a project ([1]) where a waypoint guidance law is applied onboard a small UAV.
This guidance law is described in detail in [2]. During the simulation and flight tests a few disadvantages of
this method were discovered.

A new waypoint guidance method was proposed in [3] and compared with the original (in [2]) method
including real flight test results.

The goal of this work is to make a more extensive literature review mapping the possible alternative way-
point guidance and trajectory tracking solutions. The proposed method (in [3]) can be reviewed, improved
and tuned based on the literature.

The organization of the rest of the paper is as follows: Section II briefly describes the strategy proposed in
[2] and points out its disadvantages presenting simulation results. Section III shortly describes the proposed
new strategy summarizing its properties. Section IV makes the literature review collecting the possible
necessary properties of a waypoint guidance or trajectory tracking solution. The author’s solution is reviewed
based on this list and the possible necessary improvements are listed. Finally the further aims of this paper are
enumerated. Section V describes the tuning of controller parameters obtaining the optimal values. Section
VI compares linear and circular reachability maneuvers from the view of required path lengths. Section VII
demonstrates the capability of the solution to track a given spatial parametric trajectory. Finally section
VIII concludes the paper.
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II. The original waypoint guidance strategy

A waypoint guidance strategy which is based on aircraft position and speed relative to the straight path
segment between the two waypoints is proposed in [2]. This strategy is very briefly introduced here. For
notations see figure 1.

Figure 1. The used notations in waypoint guidance

In figure 1 (X,Y ) is the coordinate system aligned with the straight path segment constructed from
waypoint 1 and 2. Xtrack and Ytrack are the aircraft position parameters measured from the target waypoint
(WP2). Ẋtrack and Ẏtrack are the aircraft velocity components along the X and Y axes. The goal of this
guidance law is to fly towards the point k · Xtrack which is a moving point as can be seen from the figure
(here k is a tuning parameter).

This requirement is satisfied if

Ẋtrack

k ·Xtrack
=
Ẏtrack
Ytrack

(1)

From Eq. (1) the following error term is derived:

E = k ·XtrackẎtrack − YtrackẊtrack = 0 (2)

This error term is zero if aircraft flies into the required direction, otherwise it is nonzero. So it should be
driven to zero. Further details about this guidance strategy can be read in [2].

The method was extensively tested in simulations and real flights and the following disadvantages were
experienced:

1. The algorithm reacts inversely for far and near target waypoints. The natural behavior should be to
do gentle maneuvers for far and aggressive maneuvers for near points. This means gentle or aggressive
turns into the direction of the point. However, examining Eq. (2) it turns out that this guidance
behaves inversely. Assume that Ẋtrack, Ẏtrack, Ytrack and k are constant. This means constant aircraft
velocities relative to the path, constant miss distance and fixed guidance strategy. Now if Xtrack is
large (WP2 is far) then E becomes large, if Xtrack is small, then E becomes small. Aircraft reference
yawrate is generated proportionally to E (see the cited article). This means aggressive turns for far
and gentle turns for near waypoints and leads to problems in tracking.

2. It was experienced that small k tuning values should be used if waypoints are far from each other (to
limit E) and large ones if they are close to each other. This requires adaptive on-line tuning if both
close and far waypoints occur, which should be avoided if possible.

3. The guidance strategy does not considers aircraft dynamics and so, the reachability or unreachability
of the target waypoint. Because any aircraft has a minimum turn radius it is possible to fly into a
limit cycle when aircraft flies circles around the target point and never reaches it.
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The above statements are visualized using software-in-the-loop (SIL) simulation results. The SIL for
Ultrastick UAV (see [1] and [4]) was used.

Three test cases were run (the waypoint positions are given in meters relative to the starting point using
East (E) and North (N) notations) with k = 1 tuning value and without wind effects.

1. To track a path with far waypoints:
0E/0N , −100E/− 100N , −2100E/− 100N

2. To track a path with close waypoints:
0E/0N, -100E/-100N, -300E/-100N

3. To track a path with very close waypoints:
0E/0N, -100E/-100N, -170E/-100N
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Figure 2. Waypoint tracking case study.
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Figure 3. Aileron deflections in waypoint tracking case study.

The results can be seen in figures 2 and 3. The circles denote the given waypoints with the 20m tolerance
radius.

Figure 2(a) and (b) show that the aircraft tracks both the far and close waypoints well. But it is worth to
see the aileron deflections in figure 3. In the first case almost bang-bang control is applied while the aircraft
is far from the waypoint. This is not an acceptable behavior and proves the first and second statements.
Figure 2 (c) shows the limit cycle when the waypoint is unreachable with the given aircraft.

These disadvantages should be corrected by developing a new waypoint guidance strategy. This new
strategy is introduced in the next section (III).
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III. A new waypoint guidance strategy

The goal in the development of this strategy was to overcome the difficulties of the other strategy
introduced in the previous section. This algorithm is based on azimuth angle difference between azimuth
angle of aircraft velocity vector and azimuth angle between aircraft position and waypoint (called as track
azimuth angle ψT and defined in Eq. 3). All azimuth angles are defined relative to the North axis of Earth
coordinate system (coord. sys.). This provides proper scaling according to the situation. If the waypoint is
far, small azimuth angle difference results from the same lateral miss distance (see figure 4).

Figure 4. Azimuth angle differences for far and close waypoints

Figure 4 shows that the azimuth angle difference becomes smaller if the next waypoint is farther from
the aircraft and this is the required behavior. This way the scaling problem is solved. In the following, the
details of the algorithm are described.

In case of reaching a waypoint (or start of tracking control) the algorithm first checks if aircraft flying
direction is within a ±ATOL◦ range relative to the track azimuth angle ψT (see figure 5 where XE , Y E is
Earth coord. sys.). Here 10 was a sufficiently small ATOL angle value selected by engineering intuition.
The optimal ATOL value will be determined in section V.

Figure 5. Decision about tracking method with ±ATOL◦ range constraint

In figure 5 XA, Y A is aircraft current position in Earth coord. sys., XT , Y T is the position of the next
waypoint. The track azimuth angle can be calculated as:

ψT = arctan

(

Y T − Y A

XT −XA

)

(3)

Actual aircraft azimuth angle (ψ) is estimated using the attitude estimation EKF (see [5] [6]).
If ψ is within the ±ATOL◦ range relative to ψT the aircraft flies directly towards the waypoint. This is

called linear path segment tracking. During linear path segment tracking the aircraft calculates the track
azimuth angle and the azimuth angle difference in all time steps.

If ψ is out of the ±ATOL◦ range relative to ψT the aircraft approaches the point using a circular path.
This is called circular path segment tracking.

It starts with the calculation of the circular path to be followed and checking of waypoint reachability.
At first, the possible turn radius is calculated considering the equation of coordinated turn:

R =
V 2

tanφ0 · g · k
=

(

uE
)2

+
(

vE
)2

tanφ0 · g · k
(4)
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Here, V is the horizontal velocity of aircraft relative to the ground (calculated from North (uE) and East
(vE) velocity components in Earth coord. sys. measured with GPS), φ0 is the turn bank angle, g is the
gravitational constant and k is a correction factor to make R larger (0 < k ≤ 1). φ0 is chosen to be constant
25◦ to make it possible to track the circle within ±40◦ roll angle range (this limitation is applied because
non-aerobatic aircrafts are considered only). The best value of k will be obtained in section V.

After calculating the radius of circle, its center point should be calculated according to Eq. 5. Here, ∆ψ
gives the direction of turn (right or left turn). After calculating the circle center, the reachability of the
waypoint is checked.

∆ψ = sign(ψT − ψ) · 90◦

XC = XA +R cos(ψ +∆ψ)

Y C = Y A +R sin(ψ +∆ψ)

(5)

The strategy for waypoint catching is to track the circle while aircraft azimuth angle reaches the ±ATOL◦

range relative to the waypoint (see figure 6). At this point, the algorithm can change to linear segment
tracking and fly directly to the waypoint.

Figure 6. Change from circular segment tracking to linear segment tracking

The existence of this transition point is guaranteed if the waypoint is outside of the circle. So, waypoint
reachability can be checked by checking if the waypoint is inside or outside of the circle. This is done
considering the distance of the waypoint from the circle center (see figure 6) and a safety distance of TOL
m (considering imperfect circle tracking in high wind conditions):

R2 =
√

(XT −XC)2 + (Y T − Y C)2

if R2 > R+ TOL → reachable

else not reachable

(6)

If the waypoint is reachable, the aircraft starts to track the circle by tracking a virtual waypoint along it.
This waypoint is s m arc length forward of the aircraft along the circle. Its position is calculated as follows:

ψC = arctan

(

Y A − Y C

XA −XC

)

ψ
C
= ψC+

+ sign
(

(XA −XC) · vE − (Y A − Y C) · uE
) s

R

XT = XC +R · cos
(

ψ
C
)

Y T = Y C +R · sin
(

ψ
C
)

(7)
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Here, in the second equation the sign of the vector product of the vector pointing from circle center to
the aircraft position and aircraft velocity vector is considered, because this gives the flight direction along
the circle. s is the arc length (will be tuned in section V) and ψC is aircraft’s azimuth angle along the circle
(azimuth angle of the point on the circle closest to the aircraft).

If the waypoint is unreachable, the algorithm guides the aircraft to fly straight ahead until the waypoint
becomes reachable, see figure 7.

Figure 7. Straight flight until original waypoint (XT , Y T ) becomes reachable

During this flight, the circle is calculated and reachability is checked in every time step. If the waypoint
becomes reachable, the algorithm changes to circular segment tracking. This strategy can prevent flying in
a limit cycle if the tolerance in Eq. 6 is large enough, but it is still possible to end in a limit cycle especially
in high wind conditions.

Until the waypoint is unreachable, the aircraft tracks a virtual waypoint two circle diameter ahead of
the aircraft (this point is fixed when unreachability is detected and remains unchanged until reachability is
satisfied):

XT = XA + 4R · cos (ψ)

Y T = Y A + 4R · sin (ψ)
(8)

This way the strategy has three modes from which two needs the same tracking solution:

1. Flying straight towards the next waypoint (linear path segment tracking).

2. Flying straight towards a virtual waypoint to provide waypoint reachability (linear path segment
tracking).

3. Flying along a circle (circular path segment tracking).

Both linear and circular path segment tracking is done with an azimuth angle difference based control
of the aircraft. This can be done using a simple proportional controller which converts the azimuth angle
difference to a roll angle reference value. This value can be tracked by the aircraft low level controller (see
[4] [7]). The proportional control law is as follows:

φref = sign(ψT − ψ) ·min(kφ · |ψT − ψ|, 40◦) (9)

The kφ gain will be tuned in section V.
To prove that the drawbacks of the previous method were removed, the same simulations as in the

previous section were done with this new method. The results can be seen in figure 8.
Figure 8 (a) does not show large difference compared to figure 2 (a) but there is no oscillation in aileron

deflections as figure 8 (d) shows. So, there is a large improvement compared to the other method.
The tracking of close waypoint seems to be worse with the new method (compare figure 8 (b) with figure 2

(b)) because the waypoint was classified as unreachable thanks to the tolerance in reachability decision. But
this provides that, the originally unreachable point becomes reachable as figure 8 (c) shows.
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Figure 8. Waypoint tracking case study.
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The properties of this new strategy are as follows:

1. It makes possible to fly between given fixed waypoints. The flight path between the points is not
constrained.

2. It is scaled by the real situation, gentle control for far, aggressive control for close waypoints.

3. It checks and guarantees waypoint reachability.

4. It considers aircraft dynamics calculating turn radius from coordinated turn requirement.

5. It has two modes: the approach stage with circular or linear + circular segment tracking and the final
stage with linear segment tracking.

6. It tracks the given path based on azimuth angle difference, using bank angle control of the aircraft.

III.A. Real flight test results

In this subsection the results of two flight tests are presented. The task was to catch given waypoints with
the aircraft in all two cases.

In the first case the old waypoint guidance strategy (from [2]) was tested with four waypoints. In the
second case, the proposed new strategy with the azimuth angle based guidance law was tested with three
waypoints. The results are shown in figure 9.
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Figure 9. Real flight test results.

The figures show that the old law misses the waypoints several times, that’s why it makes ’circles’ to
catch them. The new law successfully catches all the points and has almost identical pathes between the
three points except for the last section. This section is affected by the West-East wind which had variable
velocity.

This means that the proposed new law outperforms the old one. In the next section an extensive literature
review will be done to decide about the possible direction(s) of further development.

IV. Review of waypoint guidance and trajectory tracking literature

[8] deals with the tracking of a given spatial curve. A virtual point is moved along the target trajectory
and the goal is to decrease the cross track and the direction error to zero. A nonlinear backstepping strategy
is used which assumes the knowledge of vehicle dynamics.

[9] describes a proportional navigation method. The goal is to decrease the line-of-sight rate to zero (to
hold the target direction relative to the aircraft constant). This is similar to the linear segment tracking case
in the previous section, when the aircraft flies towards a given point. But the point is moving in this article!
The problem is solved using nonlinear model predictive control (MPC).
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[10] this solution is similar to [8] it tracks a moving virtual point along the given trajectory. A required
azimuth angle is approximately calculated based on cross track and lookahead distances.

[11] describes a fuzzy approach based tracking method which is able to catch moving waypoints with a
given heading angle. It very well lists the possible goals and problems in waypoint guidance which will be
used in listing the possible goals in this article.

In [12] a very similar method to the one described in the previous chapter can be found. It controls the
turning rate and heading angle of the aircraft. It has a shortpath and lowturning requirement which means
calculating the possible shortest path between two points and turning on a radius as large as possible. It
considers waypoint reachability but not flies straight forward in case of unreachable waypoint. It makes a
turn in the other direction instead. It considers coordinated turn and error tolerance in trajectory generation.
It applies two stage control with turning stage and transitional (final) stage.

[13] This solution is similar to the one published in [9]. It controls the line-of-sight using a Lypaunov
function based technique.

Considering all of this literature sources and our achievements (in the previous section) the above possible
goals can be listed:

1. To use a more sophisticated control technique such as fuzzy logic, nonlinear MPC, backstepping and
Lyapunov function based nonlinear techniques instead of the simple bank angle based proportional
control.

2. To provide waypoint reachability with the shortest possible path. This could require a turning maneu-
ver instead of flying straight ahead.

3. To track a given spatial trajectory with the aircraft instead of catching only a few waypoints.

4. To track moving waypoints.

5. To cross fixed or moving waypoints with a given heading and/or velocity.

Considering the above possible goals the goals of this work were decided as follows:

1. Avoid using sophisticated (and so complicated) nonlinear control methods if the simple method is
satisfactory. This requires fine tuning of the parameters (ATOL, kφ, k, s).

2. To make the shortest possible reachability maneuver. Our method basically flied straight ahead in
case of an unreachable point while the point became reachable. A possible alternative solution is
proposed in [12] where the aircraft makes a turn in the opposite direction from the given waypoint.
This accelerates the increase in the distance between aircraft and point. But does it result in a shorter
overall path to the point? This should be tested.

3. To test the proposed method in parametric spatial trajectory tracking.

The above goals give the work of the forthcoming sections.

Figure 10. The used notations in linear segment tracking fine tuning
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V. Fine tuning of controller parameters

This section deals with the fine tuning of controller parameters described in section III. At first, it makes
the fine tuning of linear segment tracking, then it deals with the fine tuning of circular segment tracking.
Tuning was done using SIL simulations without wind disturbances.

V.A. Fine tuning of linear segment tracking

The performance of linear segment tracking control can be dependent from ATOL heading angle tolerance,
kφ controller gain in Eq. 9 and the length of the linear segment. The fine tuning regarding these parameters
was done by making a lot of SIL simulations with different parameters. The ATOL parameter was considered
as the initial direction difference of the aircraft from the line (see figure 10).

Three different path lengths were considered (L = 50m, L = 200m, L = 1000m) with several different kφ
and ATOL values. The nonlinear aircraft SIL simulation was run and the time averaged absolute tracking
error was calculated in all cases. The results are summarized in tables 1, 2, 3 (the first column shows the
value of kφ parameters, the first row shows the value of ATOL parameters, while the inside shows the time
averaged absolute tracking error.

Table 1. Tuning parameters and time averaged absolute errors [m] with L=50m

kφ / ATOL [deg] 0 5 10 15 20 25 30

0.1 0.16 1.17 2.56 4.09 5.84 8.49 194.65

0.25 0.16 1.16 2.53 4.04 5.76 8.06 125.95

0.5 0.17 1.13 2.48 3.88 5.53 7.58 10.86

1 0.18 1.08 2.39 3.74 5.24 7.13 7.97

3 0.23 0.91 2.2 3.66 5.22 7.13 9.79

6 0.29 0.87 2.2 3.66 5.22 7.13 9.79

10 0.32 0.87 2.2 3.66 5.22 7.13 9.79

Table 2. Tuning parameters and time averaged absolute errors [m] with L=200m

kφ / ATOL [deg] 0 5 10 15 20 25 30

0.1 274.1 4.73 4.43 10.86 17.8 360.3 498

0.25 170.46 4.65 3.97 7.89 13.25 18.56 23.79

0.5 7.38 4.43 3.95 5.45 8.3 11.84 15.39

1 4.93 3.7 3.7 4.39 5.51 6.97 9

3 1.79 1.48 1.36 2.04 3.81 6.36 9.22

6 0.85 0.94 1.4 2.16 3.86 6.38 9.31

10 0.86 0.99 1.47 2.2 3.9 6.43 9.33

Table 3. Tuning parameters and time averaged absolute errors [m] with L=1000m

kφ / ATOL [deg] 0 5 10 15 20 25 30

0.1 5159 4179 3273 2508 2034 1888 2042

0.25 2288 1906 1569 1297 1135 1097 1155

0.5 22.8 19.3 16.3 13.94 12.27 11.6 11.87

1 11.53 9.97 8.65 7.56 6.68 6.07 6.11

3 3.87 3.35 2.56 1.93 2.3 3.66 5.73

6 1.91 1.62 1.24 1.1 2.2 4.15 6.51

10 1.89 1.65 1.31 1.23 2.37 4.27 6.6

10 of ??

American Institute of Aeronautics and Astronautics Paper 2012



From the tables it is obvious that small kφ gains give very large errors (except for some cases). That is
why plots were constructed considering kφ from 1 to 10 only. The plots can be seen in figures 11.
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Figure 11. Parameter dependence of time averaged absolute errors in linear segment tracking

From the figures and from calculations it resulted that the optimum kφ should be between 2 and 8 and
the optimum ATOL parameter should be between 0 and 10 irrespective of the segment length. Considering
this statements another calculation with SIL was run considering the parameter ranges below:

kφ =
[

2 3 4 5 6 7 8
]

ATOL =
[

0 5 10
]

L =
[

25 50 100 200 400
]

From these calculations similar plots and data were got. The final optimal kφ resulted as 6 and the final
optimal ATOL as 10 irrespective of the segment length. This way the optimal parameters for linear segment
tracking were determined. The next step is the determination of optimal parameters for circular segment
tracking.

V.B. Fine tuning of circular segment tracking

The performance of circular segment tracking control can be dependent from k correction factor, s forward
arc length and kφ controller gain. The fine tuning regarding these parameters was done by making a lot of
SIL simulations with different parameters considering V = 20m/s ground speed and calculating turn radius
according to Eq 4. The flight task was to fly a circle. Four different k values were considered: 1 0.65 0.3 0.1
(1 for smallest possible and 0.1 for 10 times larger circles) with several different kφ and s. The time averaged
absolute errors are summarized in tables 4, 5, 6, 7 (the first column shows the value of kφ parameters, the
first row shows the value of s parameters, while the inside shows the time averaged absolute tracking error).

The data are plotted in figures 12, 13. Here, kφ values above 1 are good again. The optimum kφ and s
values were determined with minimum seeking in Matlab for every k value. The results are shown in table 8.
The table shows that the optimum kφ gain is 3 and the optimum s forward arc length is 75m irrespective of
the k scaling (the mean value of the achieved optimal s values is 76.25 which is close to 75). Now only the
optimal k should be chosen. The average error largely decreases by decreasing k, but this means larger and
larger turn radii which makes waypoint tracking more and more complicated and requires more and more
time to be tracked. Finally, k = 0.65 was selected to avoid extremely large turning radii. Note that the 5.7m
average absolute tracking error is well inside the given 20m tolerance radius of waypoints.

Table 4. Tuning parameters and time averaged absolute errors [m] with k=1

kφ / s [m] 5 10 40 75 115 200

0.1 218.9 221.8 34.9 34.6 231.3 224

0.25 95.8 102.8 125.5 135 134.8 116.5

0.5 36 32.1 45.6 53.4 51 25.3

1 42.9 38.8 21.7 17.8 9.4 16.7

3 39.9 34.6 14.2 10.9 13.6 19.6

6 39.9 32.8 14.6 11.4 15.5 19.6

10 39.5 32.4 15.2 11.8 16.1 19.6
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Table 5. Tuning parameters and time averaged absolute errors [m] with k=0.65

kφ / s [m] 5 10 40 75 115 200

0.1 263.7 20.1 19.6 19.6 19.4 18.8

0.25 57.5 67.5 103.1 124 134 128.3

0.5 34.3 26 35 46 48.4 32.1

1 43 36 12.8 14.8 8.9 21

3 42.9 32 6.6 5.7 18.9 46.38

6 41.2 30.7 7.3 8.7 24 49

10 40.8 30.3 8.3 6.9 22.9 48.7

Table 6. Tuning parameters and time averaged absolute errors [m] with k=0.3

kφ / s [m] 5 10 40 75 115 200

0.1 5.8 6.1 7.6 339.5 367.1 399.1

0.25 21.5 20.7 50 75 93.4 111.5

0.5 34 27.1 18.7 28.1 34.9 32.3

1 43.2 36 7.6 10 8.2 9.1

3 43 37.1 1 2.2 9.8 37.9

6 43.2 37.2 2.86 5.2 14.2 45.3

10 43.3 37.4 3.5 4.2 14 46.4

Table 7. Tuning parameters and time averaged absolute errors [m] with k=0.1

kφ / s [m] 5 10 40 75 115 200

0.1 1.1 1.3 76.7 122.1 165 235.9

0.25 25 19.3 1 1.2 1.3 1.28

0.5 39.8 31.9 8.1 0.85 0.84 0.79

1 47.4 38.7 3.6 5.3 5.8 1.7

3 47.5 40.1 0.65 0.26 2.6 12.8

6 47.5 40.3 2.3 1.5 4.6 16.3

10 47.6 40.4 2.7 1.2 4.5 16.9
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Figure 12. Parameter dependence of time averaged absolute errors in circular segment tracking
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Figure 13. Parameter dependence of time averaged absolute errors in circular segment tracking

Table 8. Optimum parameters from circular segment tracking fine tuning

k kφ OPT s OPT [m] err OPT [m]

1 1 115 9.44

0.65 3 75 5.7

0.3 3 40 1.037

0.1 3 75 0.266

After fine tuning of controller parameters the problem of linear or circular reachability maneuver was
considered in the next section.

VI. Linear or circular reachability maneuver? Which is optimal?

In section III waypoint reachability was solved by flying straight ahead until the waypoint becomes
reachable (see figure 7). However, [12] suggests to turn away from the waypoint on a circle until the
waypoint becomes reachable. The question is that which solution requires less flight time? This can be
decided calculating the required flight path lengths and comparing them.

The two different situations are shown in figure 14. In the first case the aircraft flies along a linear path
segment until the waypoint XT , Y T becomes reachable. Then it follows the circle centered at XC2, Y C2 until
it reaches the ±ATOL◦ range. Finally it flies straight toward the point. In the second case the aircraft turns
along the circle centered at XC,, Y C, until the waypoint XT , Y T becomes reachable. Then it follows the
circle centered at XC2, Y C2 until it reaches the ±ATOL◦ range. Finally it flies straight toward the point.

It is not trivial which solution results in shorter flight paths, so it was calculated in an example. Several
waypoints were generated along a circle considering the tolerance (TOL) also. The generated points for
different distances from the tolerance limit are shown in figure 15(a). The figure shows the possible turn
circle of the aircraft (inner blue), the tolerance circle (outer blue) and three point sets with different distances
from the tolerance circle. The left side is straight because the aircraft was assumed to be in (0, 0) with 90◦

azimuth angle and all the points should be on the right side of it. The calculated points are parameterized
with their azimuth angle relative to the circle center (0, 150).

The required path lengths from the aircraft position to the target point were calculated both with linear
and circular reachability maneuvers. The resulting path lengths are shown in figure 15(b). The figure shows
that the required path lengths of the linear maneuvers are larger or equal with the path lengths of the
circular maneuvers. This means that the circular maneuvers are optimal with smaller required path lengths,
so in the future these should be used in the tracking.
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(a) Linear reachability maneuver (b) Circular reachability maneuver

Figure 14. Possible reachability maneuvers
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Figure 15. Waypoints and required path lengths
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VII. Tracking of a given parametric spatial trajectory

The tracking of circular path segments is done with moving a virtual point along the circle and tracking
this point with the aircraft. This is really similar to the case of tracking a parametric spatial curve. So, the
latter application possibility is worth to be tested. This is done in this section.

VII.A. Theoretical background

Assume that the trajectory to be tracked is a spatial, parameterized curve (in the XY plane) given by the
following functions:

X = fx(p)

Y = fy(p)
(10)

Eq. 10 is parameterized by the parameter p. It is required to have smaller or equal curvature in every
p point than the maximum feasible curvature from aircraft dynamics point of view. Now, and later on a
simplified trajectory is used as an example, but most of the formulae will be derived for the general case.
The example curve is given by:

X = p

Y = A sin

(

2π

T
p−

π

2

)

+A = f(X)
(11)

Where A is the amplitude, T is the period distance and π
2 is the offset. The curvature of such a curve can

be calculated as follows:

C =
|f̈(X)|

(1 + ḟ(X)2)3/2
=

1

R
(12)

In Eq. 12 ḟ(X) means df(X)
dX . The turn radius in each point can be calculated as:

R =
(1 + ḟ(X)2)3/2

|f̈(X)|
=

(

1 +A2 4π2

T 2

(

cos
(

2π
T p−

π
2

))2
)3/2

∣

∣−A 4π2

T 2 sin
(

2π
T p−

π
2

)∣

∣

(13)

The minimum and maximum radii are as follows:

X =
T

2
R =

T 2

A4π2

X =
3T

4
R = ∞

(14)

Eq. 14 shows that if one knows the minimum possible turn radius of the aircraft the trajectory can be tuned
to be feasible selecting appropriate A and T values. The expressions also show that a sinusoidal curve is a
very good test curve because it has a continuously varying radius from ∞ to a given minimum. This means
that a continuously varying curvature should be tracked by the aircraft.

After defining the trajectory it can be tracked by moving a virtual point along it in a given lookahead
distance (s) forward of the aircraft. Assume that aircraft starting position and the initial parameter value
for the first virtual point (p0) along the curve are known. Then the aircraft moves towards the point and
the point position should be generated in every time step. This can be done by calculating the orthogonal
projection of aircraft position to the parametric curve and the position of virtual point from this projected
point considering the given lookahead distance. Finally the p parameter giving the position of the virtual
point should be obtained. But the steps of this two step calculation are extremely difficult for parametric
curves.

A simplified solution can be obtained by determining the intersection of an aircraft position centered
circle with radius s and the parametric curve:
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XA + s cos(ψA) = fx(p)

Y A + s sin(ψA) = fy(p)
(15)

Here, the two unknowns are ψA and p, but closed form solution is also extremely difficult for parametric
curves described by highly nonlinear fx(p) and fy(p) functions.

The problem can be approximately solved by the following multi step calculation:

1. Calculate the estimated position of the virtual point (XV , Y V ) considering aircraft velocity.

2. From this estimated position calculate the possible p and ψA parameter values.

3. Finally, refine the results with Newton-Raphson iteration.

Step 1:
The estimated next virtual point position can be calculated considering the tangent vector of the curve

in the previous position (always denoted by p0), aircraft ground velocity (V ) and time step of solution (∆t)
(because the virtual point should move together with the aircraft):

XV = fx(p0) +
ḟx(p0)

√

ḟx(p0)2 + ḟy(p0)2
V∆t

Y V = fy(p0) +
ḟy(p0)

√

ḟx(p0)2 + ḟy(p0)2
V∆t

(16)

Step 2:
Because the estimated point (XV , Y V ) is not exactly on the curve two different p values can be calculated

from the XV and Y V positions. Their average can be the approximate p parameter value.

px = f−1
x

(

XV
)

py = f−1
y

(

Y V
)

p =
px + py

2

(17)

The possible ψA can be calculated as follows:

ψA = atan2

(

fY (p)− Y A

fx(p)−XA

)

Step 3:
The nonlinear expression to be made to zero is (derived from Eq. 15):

Φ(z) =

[

XA + s cos(ψA)− fx(p)

Y A + s sin(ψA)− fy(p)

]

= 0 z =

[

ψA

p

]

(18)

The Newton-Raphson iteration for this expression is:

given z0

∆z = −

[

∂Φ(z)

∂z
|z0

]−1

Φ(z0)

z0 = z0 +∆z

repeat until ∆z < tolerance

(19)

In our case the inverse function can be calculated in closed form:
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∂Φ(z)

∂z
=

[

−s sin(ψA) −ḟx(p)

s cos(ψA) −ḟy(p)

]

[

∂Φ(z)

∂z

]−1

=

[

−ḟy(p) ḟx(p)

−s cos(ψA) −s sin(ψA)

]

1

s sin(ψA)ḟy(p) + s cos(ψA)ḟx(p)

(20)

The inverse exists if s sin(ψA)ḟy(p) + s cos(ψA)ḟx(p) 6= 0. This expression is the scalar product of the vector
pointing from aircraft position to the curve and the curve tangent vector. The product is zero if the two
vectors are perpendicular. This is the case when p gives the orthogonal projection of aircraft position to the
curve. In this case p should be left unchanged, otherwise the iteration can be done.

Because UAVs have limited computational capacity, the iteration is stopped by the number of steps (3
steps are done) instead of a given tolerance for ∆z. After developing this trajectory tracking solution it was
tested in SIL simulation.

VII.B. SIL flight test
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Figure 16. Starting and end error terms of Newton-Raphson iteration
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Figure 17. The tracking of a given spatial trajectory

The parameters of the sinusoidal reference trajectory were chosen as A = 20, R = 100, T ≈ 281. T
was calculated from Eq. 14. The parameters of the controller were the optimal ones selected in section V
(s = 75, kφ = 3). The circular tracking gain was used because of continuously varying curvature.
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Results are shown in figures 16, 17. The first figure shows that the 3 step Newton-Raphson iteration is
very effective, it decreases the error of the solution to very close to zero. The second figure shows that the
aircraft tracks the sinusoidal trajectory very well.

SIL simulations with other parameter values were also done, but the detailed evaluation was left to the
future.

VIII. Conclusion

This paper first described a waypoint guidance strategy from [2] and pointed out its disadvantages. Then
repeated the derivation of a new solution which corrects these disadvantages (published originally in [3]).
Simulation and real flight test results prove the efficiency of the new method. This inspired the authors to
further develop it. This development starts with extensive literature review. From the literature the possible
further development steps were determined and some of them was implemented here. The first step was the
fine tuning of the algorithm to achieve the possible best results. The second step was the examination of
linear or circular reachability maneuvers from path length point of view. It was pointed out that the circular
maneuvers result in shorter paths and so, they are better. The final step was the development of the strategy
to track a prescribed reference trajectory. This trajectory can be given by a parameterized spatial curve.
The contribution of this article is to relatively simply (and accurately) calculate the position of the virtual
point to be tracked. This section ends with a simulation example which shows the success of the method.

Considering the literature review part, the further developments can be:

1. Real flight tests of the circular reachability maneuvers and the trajectory tracking.

2. Development to be able to cross waypoints with a given heading.

3. Development to track moving waypoints (target points).
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