1,954 research outputs found

    Theta synchronization over occipito‐temporal cortices during visual perception of body parts

    Get PDF
    Categorical clustering in the visual system is thought to have evolved as a function of intrinsic (intra-areal) and extrinsic (interareal) connectivity and experience. In the visual system, the extrastriate body area (EBA), an occipito-temporal region, responds to full body and body part images under the organizational principle of their functional/semantic meaning. Although frequency-specific modulations of neural activity associated with perceptive and cognitive functions are increasingly attracting the interest of neurophysiologists and cognitive neuroscientists, perceiving single body parts with different functional meaning and full body images induces time-frequency modulations over occipito-temporal electrodes are yet to be described. Here, we studied this issue by measuring EEG in participants who passively observed fingers, hands, arms and faceless full body images with four control plant stimuli, each bearing hierarchical analogy with the body stimuli. We confirmed that occipito-temporal electrodes (compatible with the location of EBA) show a larger event-related potential (ERP, N190) for body-related images. Furthermore, we identified a body part-specific (i.e. selective for hands and arms) theta event-related synchronization increase under the same electrodes. This frequency modulation associated with the perception of body effectors over occipito-temporal cortices is in line with recent findings of categorical organization of neural responses to human effectors in the visual system

    Total Hemi-overgrowth in Pigmentary Mosaicism of the (Hypomelanosis of) Ito Type: Eight Case Reports.

    Get PDF
    Pigmentary mosaicism of the (hypomelanosis of) Ito type is an umbrella term, which includes phenotypes characterized by mosaic hypopigmentation in the form of streaks, whorls, patchy, or more bizarre skin configurations (running along the lines of Blaschko): these cutaneous patterns can manifest as an isolated skin disorder (pigmentary mosaicism of the Ito type) or as a complex malformation syndrome in association with extracutaneous anomalies (most often of the musculoskeletal and/or nervous systems) (hypomelanosis of Ito). Affected individuals are anecdotally reported to have also partial or total body hemi-overgrowth (HOG), which often causes moderate to severe complications.We studied the occurrence and features of HOG in the 114 children and adults with mosaic pigmentary disorders of the Ito type diagnosed and followed up (from 2 to 22 years; average follow-up 16 years) at our Institutions.Eight patients (5 M, 3 F; aged 4 to 25 years; median age 16 years) out of the 114 analyzed (7%) fulfilled the criteria for unilateral HOG, with differences in diameter ranging from 0.4 to 4.0 cm (upper limbs) and 1.0 to 9.0 cm (lower limbs). Moreover, among these 8 patients, 5/8 filled in the 75th to 90th percentile for height; 6/8 had associated kyphoscoliosis; and 5/8 showed cognitive delays. No tumour complications were recorded. Overall, 6/8 HOG patients presented with additional (extracutaneous) syndromic manifestations, apart from the HOG (ie, with a clinical phenotype of hypomelanosis of Ito).The present study, which includes children and adults with the longest follow-up so far recorded, confirms the association between pigmentary mosaicism of the Ito type and HOG lowering previous estimates (7% vs 16%) for HOG in the context of mosaic hypopigmentation. A careful examination, looking at subtle to moderate asymmetries and associated complications within the spectrum of these mosaic pigmentary disorders, is recommended

    Protein conformation and molecular order probed by second-harmonic-generation microscopy

    Get PDF
    Second-harmonic-generation (SHG) microscopy has emerged as a powerful tool to image unstained living tissues and probe their molecular and supramolecular organization. In this article, we review the physical basis of SHG, highlighting how coherent summation of second-harmonic response leads to the sensitivity of polarized SHG to the three-dimensional distribution of emitters within the focal volume. Based on the physical description of the process, we examine experimental applications for probing the molecular organization within a tissue and its alterations in response to different biomedically relevant conditions. We also describe the approach for obtaining information on molecular conformation based on SHG polarization anisotropy measurements and its application to the study of myosin conformation in different physiological states of muscle. The capability of coupling the advantages of nonlinear microscopy (micrometer-scale resolution in deep tissue) with tools for probing molecular structure in vivo renders SHG microscopy an extremely powerful tool for the advancement of biomedical optics, with particular regard to novel technologies for molecular diagnostic in vivo. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Molecular Mechanism Involved in the Pathogenesis of Early-Onset Epileptic Encephalopathy

    Get PDF
    Recent studies have shown that neurologic inflammation may both precipitate and sustain seizures, suggesting that inflammation may be involved not only in epileptogenesis but also in determining the drug-resistant profile. Extensive literature data during these last years have identified a number of inflammatory markers involved in these processes of "neuroimmunoinflammation" in epilepsy, with key roles for pro-inflammatory cytokines such as: IL-6, IL-17 and IL-17 Receptor (IL-17R) axis, Tumor-Necrosis-Factor Alpha (TNF-α) and Transforming-Growth-Factor Beta (TGF-β), all responsible for the induction of processes of blood-brain barrier (BBB) disruption and inflammation of the Central Nervous System (CNS) itself. Nevertheless, many of these inflammatory biomarkers have also been implicated in the pathophysiologic process of other neurological diseases. Future studies will be needed to identify the disease-specific biomarkers in order to distinguish epilepsies from other neurological diseases, as well as recognize different epileptic semiology. In this context, biological markers of BBB disruption, as well as those reflecting its integrity, can be useful tools to determine the pathological process of a variety of neurological diseases. However; how these molecules may help in the diagnosis and prognostication of epileptic disorders remains yet to be determined. Herein, authors present an extensive literature review on the involvement of both, systemic and neuronal immune systems, in the early onset of epileptic encephalopathy

    Slow Light amplification in a non-inverted gain medium

    Full text link
    We investigate the propagation of a coherent probe light pulse through a three-level atomic medium (in the Λ\Lambda--configuration) in the presence of a pump laser under the conditions for gain without inversion. When the carrier frequency of the probe pulse and the pump laser are in a Raman configuration, we show that it is possible to amplify a slow propagating pulse. We also analyze the regime in which the probe pulse is slightly detuned from resonance where we observe anomalous light propagation.Comment: 7 pages, 10 figures. To be published in Europhysics Letter

    Active primate simulator Final report

    Get PDF
    Systems engineering data and design specifications for Biosatellite active primate simulato

    Sequence searching allowing for non-overlapping adjacent unbalanced translocations

    Get PDF
    Unbalanced translocations are among the most frequent chromosomal alterations, accounted for 30% of all losses of heterozygosity, a major genetic event causing inactivation of tumor suppressor genes. Despite of their central role in genomic sequence analysis, little attention has been devoted to the problem of matching sequences allowing for this kind of chromosomal alteration. In this paper we investigate the approximate string matching problem when the edit operations are non-overlapping unbalanced translocations of adjacent factors. In particular, we first present a O(nm3)-time and O(m2)-space algorithm based on the dynamic-programming approach. Then we improve our first result by designing a second solution which makes use of the Directed Acyclic Word Graph of the pattern. In particular, we show that under the assumptions of equiprobability and independence of characters, our algorithm has a O(n log2σ m) average time complexity, for an alphabet of size σ, still maintaining the O(nm3)-time and the O(m2)-space complexity in the worst case. To the best of our knowledge this is the first solution in literature for the approximate string matching problem allowing for unbalanced translocations of factors

    Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device

    Get PDF
    The healing process of superficial skin wounds treated with a blue-LED haemostatic device is studied. Four mechanical abrasions are produced on the back of 10 Sprague Dawley rats: two are treated with the blue-LED device, while the other two are left to naturally recover. Visual observations, non-linear microscopic imaging, as well as histology and immunofluorescence analyses are performed 8 days after the treatment, demonstrating no adverse reactions neither thermal damages in both abraded areas and surrounding tissue. A faster healing process and a better-recovered skin morphology are observed: the treated wounds show a reduced inflammatory response and a higher collagen content. Blue LED induced photothermal effect on superficial abrasions

    Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues

    Get PDF
    The large use of nonlinear laser scanning microscopy in the past decade paved the way for potential clinical application of this imaging technique. Modern nonlinear microscopy techniques offer promising label-free solutions to improve diagnostic performances on tissues. In particular, the combination of multiple nonlinear imaging techniques in the same microscope allows integrating morphological with functional information in a morpho-functional scheme. Such approach provides a high-resolution label-free alternative to both histological and immunohistochemical examination of tissues and is becoming increasingly popular among the clinical community. Nevertheless, several technical improvements, including automatic scanning and image analysis, are required before the technique represents a standard diagnostic method. In this review paper, we highlight the capabilities of multimodal nonlinear microscopy for tissue imaging, by providing various examples on colon, arterial and skin tissues. The comparison between images acquired using multimodal nonlinear microscopy and histology shows a good agreement between the two methods. The results demonstrate that multimodal nonlinear microscopy is a powerful label-free alternative to standard histopathological methods and has the potential to find a stable place in the clinical setting in the near future

    Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: A minimal force-constant model

    Full text link
    We present a phenomenological force-constant model developed for the description of lattice dynamics of sp2 hybridized carbon networks. Within this model approach, we introduce a new set of parameters to calculate the phonon dispersion of graphene by fitting the ab initio dispersion. Vibrational modes of carbon nanotubes are obtained by folding the 2D dispersion of graphene and applying special corrections for the low-frequency modes. Particular attention is paid to the exact dispersion law of the acoustic modes, which determine the low-frequency thermal properties and reveal quantum size effects in carbon nanotubes. On the basis of the resulting phonon spectra, we calculate the specific heat and the thermal conductance for several achiral nanotubes of different diameter. Through the temperature dependence of the specific heat we demonstrate that phonon spectra of carbon nanotubes show one-dimensional behavior and that the phonon subbands are quantized at low temperatures. Consequently, we prove the quantization of the phonon thermal conductance by means of an analysis based on the Landauer theory of heat transport.Comment: 14 pages, 12 figure
    corecore