39 research outputs found

    Instantaneous monitoring of heart beat dynamics during anesthesia and sedation

    Get PDF
    Anesthesia-induced altered arousal depends on drugs having their effect in specific brain regions. These effects are also reflected in autonomic nervous system (ANS) outflow dynamics. To this extent, instantaneous monitoring of ANS outflow, based on neurophysiological and computational modeling, may provide a more accurate assessment of the action of anesthetic agents on the cardiovascular system. This will aid anesthesia care providers in maintaining homeostatic equilibrium and help to minimize drug administration while maintaining antinociceptive effects. In previous studies, we established a point process paradigm for analyzing heartbeat dynamics and have successfully applied these methods to a wide range of cardiovascular data and protocols. We recently devised a novel instantaneous nonlinear assessment of ANS outflow, also suitable and effective for real-time monitoring of the fast hemodynamic and autonomic effects during induction and emergence from anesthesia. Our goal is to demonstrate that our framework is suitable for instantaneous monitoring of the ANS response during administration of a broad range of anesthetic drugs. Specifically, we compare the hemodynamic and autonomic effects in study participants undergoing propofol (PROP) and dexmedetomidine (DMED) administration. Our methods provide an instantaneous characterization of autonomic state at different stages of sedation and anesthesia by tracking autonomic dynamics at very high time-resolution. Our results suggest that refined methods for analyzing linear and nonlinear heartbeat dynamics during administration of specific anesthetic drugs are able to overcome nonstationary limitations as well as reducing inter-subject variability, thus providing a potential real-time monitoring approach for patients receiving anesthesia

    Microcephaly, sensorineural deafness and Currarino triad with duplication–deletion of distal 7q

    Get PDF
    Currarino syndrome (CS) is a peculiar form of caudal regression syndrome [also known as autosomal dominant sacral agenesis (OMIM no. 176450)] characterised by (1) partial absence of the sacrum with intact first sacral vertebra, (2) a pre-sacral mass and (3) anorectal anomalies (Currarino triad). We studied a 3-year-old girl with Currarino triad who had additional systemic features and performed array comparative genomic hybridisation to look for chromosomal abnormalities. This girl had the typical spectrum of anomalies of the CS including (a) partial sacral agenesis (hemisacrum with remnants of only sacral S1–S2 vertebrae and a residual S3 vertebral body) associated with complete coccygeal agenesis, (b) pre-intrasacral dermoid, (c) intra-dural lipoma, (d) ectopic anus and (e) tethered cord. She had, in addition, pre- and post-natal growth impairment (<3rd percentile), severe microcephaly (<−3 SD) with normal gyration pattern and lack of cortical thickening associated with a hypoplastic inferior vermis, facial dysmorphism, sensorineural deafness and decreased serum levels of IGF-1. A de novo 10.3-Mb duplication of 7q34–q35 and an 8.8-Mb deletion on 7q36 were identified in this patient. The Homeobox HLXB9 (CS) gene is contained within the deletion accounting for the CS phenotype including microcephaly. The spectrums of associated abnormalities in the IGF-1 deficiency growth retardation with sensorineural deafness and mental retardation syndrome (OMIM no. 608747) are discussed. To the best of our knowledge, this is the first reported case of a patient with distal 7q chromosomal imbalance and features of CS triad (including microcephaly) and the first documented case of a patient with normal gyration pattern microcephaly. The spectrum of associated anomalies in this newly recognised phenotype complex consists of growth failure, typical facial anomalies with additional (previously unreported) nervous system abnormalities (e.g. sensorineural deafness) and somatomedin C deficiency

    Exercise and Physical Therapy Interventions for Children with Ataxia: a systematic review

    Get PDF
    The effectiveness of exercise and physical therapy for children with ataxia is poorly understood. The aim of this systematic review was to critically evaluate the range, scope and methodological quality of studies investigating the effectiveness of exercise and physical therapy interventions for children with ataxia. The following databases were searched: AMED, CENTRAL, CDSR, CINAHL, ClinicalTrials.gov, EMBASE, Ovid MEDLINE, PEDro and Web of Science. No limits were placed on language, type of study or year of publication. Two reviewers independently determined whether the studies met the inclusion criteria, extracted all relevant outcomes, and conducted methodological quality assessments. A total of 1988 studies were identified, and 124 full texts were screened. Twenty studies were included in the review. A total of 40 children (aged 5-18 years) with ataxia as a primary impairment participated in the included studies. Data were able to be extracted from eleven studies with a total of 21 children (aged 5-18 years), with a range of cerebellar pathology. The studies reported promising results but were of low methodological quality (no RCTs), used small sample sizes and were heterogeneous in terms of interventions, participants and outcomes. No firm conclusions can be made about the effectiveness of exercise and physical therapy for children with ataxia. There is a need for further high-quality child-centred research

    Astrocytic modulation of cortical oscillations

    Get PDF
    Brain waves are rhythmic voltage oscillations emerging from the synchronization of individual neurons into a neuronal network. These oscillations range from slow to fast fluctuations, and are classified by power and frequency band, with different frequency bands being associated with specific behaviours. It has been postulated that at least ten distinct mechanisms are required to cover the frequency range of neural oscillations, however the mechanisms that gear the transition between distinct oscillatory frequencies are unknown. In this study, we have used electrophysiological recordings to explore the involvement of astrocytic K+ clearance processes in modulating neural oscillations at both network and cellular levels. Our results indicate that impairment of astrocytic K+ clearance capabilities, either through blockade of K+ uptake or astrocytic connectivity, enhance network excitability and form high power network oscillations over a wide range of frequencies. At the cellular level, local increases in extracellular K+ results in modulation of the oscillatory behaviour of individual neurons, which underlies the network behaviour. Since astrocytes are central for maintaining K+ homeostasis, our study suggests that modulation of their inherent capabilities to clear K+ from the extracellular milieu is a potential mechanism to optimise neural resonance behaviour and thus tune neural oscillations
    corecore