22 research outputs found

    Efficient delipidation of a recombinant lung surfactant lipopeptide analogue by liquid-gel chromatography

    Get PDF
    Pulmonary surfactant preparations extracted from natural sources have been used to treat millions of newborn babies with respiratory distress syndrome (RDS) and can possibly also be used to treat other lung diseases. Due to costly production and limited supply of animal-derived surfactants, synthetic alternatives are attractive. The water insolubility and aggregation-prone nature of the proteins present in animal-derived surfactant preparations have complicated development of artificial surfactant. A non-aggregating analog of lung surfactant protein C, SP-C33Leu is used in synthetic surfactant and we recently described an efficient method to produce rSP-C33Leu in bacteria. Here rSP-C33Leu obtained by salt precipitation of bacterial extracts was purified by two-step liquid gel chromatography and analyzed using mass spectrometry and RP-HPLC, showing that it is void of modifications and adducts. Premature New Zealand White rabbit fetuses instilled with 200mg/kg of 2% of rSP-C33Leu in phospholipids and ventilated with a positive end expiratory pressure showed increased tidal volumes and lung gas volumes compared to animals treated with phospholipids only. This shows that rSP-C33Leu can be purified from bacterial lipids and that rSP-C33Leu surfactant is active against experimental RDS

    Receptor Tyrosine Kinases Activate Canonical WNT/β-Catenin Signaling via MAP Kinase/LRP6 Pathway and Direct β-Catenin Phosphorylation

    Get PDF
    Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling

    Nitric-Oxide-Releasing Dexamethasone Derivative NCX-1005 Improves Lung Function and Attenuates Inflammation in Experimental Lavage-Induced ARDS

    No full text
    Acute respiratory distress syndrome (ARDS) is a common complication of critical illness and remains a major source of morbidity and mortality in the intensive care unit (ICU). ARDS is characterised by diffuse lung inflammation, epithelial and endothelial deterioration, alveolar–capillary leak and oedema formation, and worsening respiratory failure. The present study aimed to investigate the anti-inflammatory activity of nitric-oxide-releasing dexamethasone derivative NCX-1005 as a potential novel drug for ARDS. Adult rabbits with lavage-induced ARDS were treated with dexamethasone i.v. (0.5 mg/kg; DEX) and nitro-dexamethasone i.v. (0.5 mg/kg, NCX-1005) or were untreated (ARDS). Controls represented healthy ventilated animals. The animals were subsequently oxygen-ventilated for an additional 4 h and respiratory parameters were recorded. Lung oedema, inflammatory cell profile in blood and bronchoalveolar lavage, levels of the cytokines (IL-1β, IL-6, IL-8, TNF-α), and oxidative damage (TBARS, 3NT) in the plasma and lung were evaluated. Nitric oxide-releasing dexamethasone derivative NCX-1005 improved lung function, reduced levels of cytokines, oxidative modifications, and lung oedema formation to similar degrees as dexamethasone. Only NCX-1005 prevented the migration of neutrophils into the lungs compared to dexamethasone. In conclusion, the nitric oxide-releasing dexamethasone derivative NCX-1005 has the potential to be effective drug with anti-inflammatory effect in experimental ARDS

    Effects of PDE3 Inhibitor Olprinone on the Respiratory Parameters, Inflammation, and Apoptosis in an Experimental Model of Acute Respiratory Distress Syndrome

    No full text
    This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung–thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1β, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS

    Time-Dependent Oxidative Alterations in Plasma and Lung Tissue after Meconium Aspiration in a Rabbit Model

    No full text
    Aspirated meconium into a newborn’s airways induces the transcription of pro-oxidative mediators that cooperate in the pathogenesis of inflammatory changes and may negatively affect the commonly used exogenous surfactant therapy. However, inflammation is not treated at present, nor is the time dependence of oxidative damage known. The aim of our study was to describe the time course of oxidative stress marker production during meconium aspiration syndrome (MAS) and its relationship to leukocyte infiltration. New Zealand rabbits were instilled with saline or meconium suspension and ventilated for 5.5 h. Respiratory parameters were recorded and blood samples were taken before meconium application and in time intervals of 15 and 30 min, 1.0, 1.5, 3.5 and 5.5 h after application to evaluate oxidative markers and differential leukocytes count. Meconium aspiration led to a worsening of respiratory parameters and a decrease in leukocytes in the first 15 min. Changes in leukocytes were correlated both with nitrotyrosine (3NT) levels and thiobarbituric acid reactive substance (TBARS) levels, with the latter also related to changes in neutrophil count. The production of 3NT and TBARS increased in 1.5 and 3.5 h, respectively, in different ways, suggesting more than one source of oxidative agents and a potential risk of exogenous surfactant inactivation in a short time. We observed that MAS triggered neutrophil migration to the alveolar space and activation, as shown by the increased expression of pro-inflammatory cytokines and generation of indicators of oxidative damage to proteins and lipids during the time period when iNOS and NO metabolites were released

    Impact of synthetic surfactant CHF5633 with SP-B and SP-C analogues on lung function and inflammation in rabbit model of acute respiratory distress syndrome

    No full text
    Acute respiratory distress syndrome (ARDS) is associated with diffuse inflammation, alveolar epithelial damage, and leakage of plasma proteins into the alveolar space, which together contribute to inactivation of pulmonary surfactant and respiratory failure. Exogenous surfactant delivery is therefore considered to hold potential for ARDS treatment, but clinical trials with natural derived surfactant or synthetic surfactant containing a surfactant protein C (SP-C) analogue have been negative. Synthetic surfactant CHF5633, containing analogues of SP-B and SP-C, may be effective against ARDS. The aim here was to compare treatment effects of CHF5633 and animal-derived surfactant poractant alfa in animal model of ARDS. ARDS was induced in adult New Zealand rabbits by mild lung lavages followed by injurious ventilation until respiratory failure (P/F rati

    <i>N</i>-Acetylcysteine in Mechanically Ventilated Rats with Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome: The Effect of Intravenous Dose on Oxidative Damage and Inflammation

    No full text
    Treatment of acute respiratory distress syndrome (ARDS) is challenging due to its multifactorial aetiology. The benefit of antioxidant therapy was not consistently demonstrated by previous studies. We evaluated the effect of two different doses of intravenous (i.v.) N-acetylcysteine (NAC) on oxidative stress, inflammation and lung functions in the animal model of severe LPS-induced lung injury requiring mechanical ventilation. Adult Wistar rats with LPS (500 ÎĽg/kg; 2.2 mL/kg) were treated with i.v. NAC 10 mg/kg (NAC10) or 20 mg/kg (NAC20). Controls received saline. Lung functions, lung oedema, total white blood cell (WBC) count and neutrophils count in blood and bronchoalveolar lavage fluid, and tissue damage in homogenized lung were evaluated. NAC significantly improved ventilatory parameters and oxygenation, reduced lung oedema, WBC migration and alleviated oxidative stress and inflammation. NAC20 in comparison to NAC10 was more effective in reduction of oxidative damage of lipids and proteins, and inflammation almost to the baseline. In conclusion, LPS-instilled and mechanically ventilated rats may be a suitable model of ARDS to test the treatment effects at organ, systemic, cellular and molecular levels. The results together with literary data support the potential of NAC in ARDS

    Impact of synthetic surfactant CHF5633 with SP-B and SP-C analogues on lung function and inflammation in rabbit model of acute respiratory distress syndrome

    No full text
    Acute respiratory distress syndrome (ARDS) is associated with diffuse inflammation, alveolar epithelial damage, and leakage of plasma proteins into the alveolar space, which together contribute to inactivation of pulmonary surfactant and respiratory failure. Exogenous surfactant delivery is therefore considered to hold potential for ARDS treatment, but clinical trials with natural derived surfactant or synthetic surfactant containing a surfactant protein C (SP-C) analogue have been negative. Synthetic surfactant CHF5633, containing analogues of SP-B and SP-C, may be effective against ARDS. The aim here was to compare treatment effects of CHF5633 and animal-derived surfactant poractant alfa in animal model of ARDS. ARDS was induced in adult New Zealand rabbits by mild lung lavages followed by injurious ventilation until respiratory failure (P/F ratio &lt;26.7 kPa). The animals were then treated with intratracheal bolus of 200 mg/kg CHF5633 or poractant alfa (Curosurf(R)), or air as control. The animals were subsequently ventilated for an additional 4 hr and respiratory parameters were recorded regularly. Postmortem, histological analysis, degree of lung edema, and levels of the cytokines TNF alpha, IL-6, and IL-8 in lung homogenates were evaluated. Both surfactant preparations improved lung function, reduced the levels of pro-inflammatory cytokines, and degree of lung edema to very similar degrees versus the controls. No significant differences in any of the analyzed parameters were observed between the CHF5633- and poractant alfa-treated groups. This study indicates that single dose of CHF5633 improves lung function and attenuates inflammation as effectively as poractant alfa in experimental ARDS caused by injurious ventilation

    Recombinant Human Superoxide Dismutase and N-Acetylcysteine Addition to Exogenous Surfactant in the Treatment of Meconium Aspiration Syndrome

    No full text
    This study aimed to evaluate the molecular background of N-acetylcysteine (NAC) and recombinant human superoxide dismutase (rhSOD) antioxidant action when combined with exogenous surfactant in the treatment of meconium aspiration syndrome (MAS), considering redox signalling a principal part of cell response to meconium. Young New Zealand rabbits were instilled with meconium suspension (Mec) and treated by surfactant alone (Surf) or surfactant in combination with i.v. NAC (Surf + NAC) or i.t. rhSOD (Surf + SOD), and oxygen-ventilated for 5 h. Dynamic lung-thorax compliance, mean airway pressure, PaO2/FiO2 and ventilation efficiency index were evaluated every hour; post mortem, inflammatory and oxidative markers (advanced oxidation protein products, total antioxidant capacity, hydroxynonenal (HNE), p38 mitogen activated protein kinase, caspase 3, thromboxane, endothelin-1 and secretory phospholipase A2) were assessed in pulmonary tissue homogenates. rhSOD addition to surfactant improved significantly, but transiently, gas exchange and reduced levels of inflammatory and oxidative molecules with higher impact; Surf + NAC had stronger effect only on HNE formation, and duration of treatment efficacy in respiratory parameters. In both antioxidants, it seems that targeting reactive oxygen species may be strong supporting factor in surfactant treatment of MAS due to redox sensitivity of many intracellular pathways triggered by meconium

    Effects of Green Tea Polyphenol Epigallocatechin-3-Gallate on Markers of Inflammation and Fibrosis in a Rat Model of Pulmonary Silicosis

    No full text
    Inhalation of silica particles causes inflammatory changes leading to fibrotizing silicosis. Considering a lack of effective therapy, and a growing information on the wide actions of green tea polyphenols, particularly epigallocatechin-3-gallate (EGCG), the aim of this study was to evaluate the early effects of EGCG on markers of inflammation and lung fibrosis in silicotic rats. The silicosis model was induced by a single transoral intratracheal instillation of silica (50 mg/mL/animal), while controls received an equivalent volume of saline. The treatment with intraperitoneal EGCG (20 mg/kg, or saline in controls) was initiated the next day after silica instillation and was given twice a week. Animals were euthanized 14 or 28 days after the treatment onset, and the total and differential counts of leukocytes in the blood and bronchoalveolar lavage fluid (BALF), wet/dry lung weight ratio, and markers of inflammation, oxidative stress, and fibrosis in the lung were determined. The presence of collagen and smooth muscle mass in the walls of bronchioles and lung vessels was investigated immunohistochemically. Early treatment with EGCG showed some potential to alleviate inflammation, and a trend to decrease oxidative stress-induced changes, including apoptosis, and a prevention of fibrotic changes in the bronchioles and pulmonary vessels. However, further investigations should be undertaken to elucidate the effects of EGCG in the lung silicosis model in more detail. In addition, because of insufficient data from EGCG delivery in silicosis, the positive and eventual adverse effects of this herbal compound should be carefully studied before any preventive use or therapy with EGCG may be recommended
    corecore