35 research outputs found

    INGA 3D - creative transfer of competence in 3D footwear CAD to VET professionals

    Get PDF
    INGA 3D project - Creative Transfer of Competence in 3D Footwear CAD to VET Professionals aims to transfer and extend innovative software solutions and 3D technologies for Footwear Computer Aided Design. The project brings together universities, research and training centres, adult education providers and IT companies from Romania, Spain, Portugal, and UK. The project products introduce innovative solutions for e-learning in order to test and to validate new teaching methodologies and approaches suitable for vocational training. The INGA 3D training content, its supportive guide as well as the online learning platform was designed, developed, tested and evaluated in line with the best practices identified by partners in their institutions, countries and elsewhere in Europe. INGA 3D project contributes to developing skills and competencies of VET teachers, trainers, tutors, in order to face the future challenges raised by the necessity of adding to the current curricula in VET institutions ICT skill sets that will enable their graduates to work with highly specialized footwear CAD technologies

    Exciting new advances in oral cancer diagnosis: avenues to early detection

    Get PDF
    The prognosis for patients with oral squamous cell carcinoma remains poor in spite of advances in therapy of many other malignancies. Early diagnosis and treatment remains the key to improved patient survival. Because the scalpel biopsy for diagnosis is invasive and has potential morbidity, it is reserved for evaluating highly suspicious lesions and not for the majority of oral lesions which are clinically not suspicious. Furthermore, scalpel biopsy has significant interobserver and intraobserver variability in the histologic diagnosis of dysplasia. There is an urgent need to devise critical diagnostic tools for early detection of oral dysplasia and malignancy that are practical, noninvasive and can be easily performed in an out-patient set-up. Diagnostic tests for early detection include brush biopsy, toluidine blue staining, autofluorescence, salivary proteomics, DNA analysis, biomarkers and spectroscopy. This state of the art review critically examines these tests and assesses their value in identifying oral squamous cell carcinoma and its precursor lesions

    Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models

    Get PDF
    Abstract In spite of the increasing availability of genomic and transcriptomic data, there is still a gap between the detection of perturbations in gene expression and the understanding of their contribution to the molecular mechanisms that ultimately account for the phenotype studied. Alterations in the metabolism are behind the initiation and progression of many diseases, including cancer. The wealth of available knowledge on metabolic processes can therefore be used to derive mechanistic models that link gene expression perturbations to changes in metabolic activity that provide relevant clues on molecular mechanisms of disease and drug modes of action (MoA). In particular, pathway modules, which recapitulate the main aspects of metabolism, are especially suitable for this type of modeling. We present Metabolizer, a web-based application that offers an intuitive, easy-to-use interactive interface to analyze differences in pathway metabolic module activities that can also be used for class prediction and in silico prediction of knock-out (KO) effects. Moreover, Metabolizer can automatically predict the optimal KO intervention for restoring a diseased phenotype. We provide different types of validations of some of the predictions made by Metabolizer. Metabolizer is a web tool that allows understanding molecular mechanisms of disease or the MoA of drugs within the context of the metabolism by using gene expression measurements. In addition, this tool automatically suggests potential therapeutic targets for individualized therapeutic interventions

    Research perspectives of the influence of lighting modes on changes of human functional state by means of “smart lighting”

    No full text
    In studies of non-visual lighting effects conflicting results are frequently obtained. We suppose that such individual differences can be related to the initial functional state, as well as to the individual type of response to light exposure. This raises the question of the need to develop methods for express-diagnosis of functional state in response to a standardized light exposure. Our results show that the effect of fatigue during mental workload can be detected by measuring the critical flicker fusion frequency for light with the specific colors and brightness levels. However, the reliability of this method is difficult to estimate because of the different brightness of LEDs of different colors. We believe that the using of a 'smart lighting' devices, allowing obtaining specific color and brightness by mixing individual colored LEDs, will overcome this limitation
    corecore