6,307 research outputs found

    Quantum nature of cyclotron harmonics in thermal spectra of neutron stars

    Full text link
    Some isolated neutron stars show harmonically spaced absorption features in their thermal soft X-ray spectra. The interpretation of the features as a cyclotron line and its harmonics has been suggested, but the usual explanation of the harmonics as caused by relativistic effects fails because the relativistic corrections are extremely small in this case. We suggest that the features correspond to the peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. The peaks arise when the transitions to new Landau levels become allowed with increasing the photon energy; they are strongly enhanced by the square-root singularities in the phase-space density of quantum states in the case when the free (non-quantized) motion is effectively one-dimensional. To explore observable properties of these quantum oscillations, we calculate models of hydrogen neutron star atmospheres with B \sim 10^{10} - 10^{11} G (i.e., electron cyclotron energy E_{c,e} = 0.1 - 1 keV) and T_{eff} = 1 - 3 MK. Such conditions are thought to be typical for the so-called central compact objects in supernova remnants, such as 1E 1207.4-5209 in PKS 1209-51/52. We show that observable features at the electron cyclotron harmonics form at moderately large values of the quantization parameter, b_{eff} = E_{c,e}/kT_{eff} = 0.5 - 20. The equivalent widths of the features can reach 100 - 200 eV; they grow with increasing b_{eff} and are lower for higher harmonics.Comment: 6 pages; shortened, references updated; published in Ap

    Channeling of electrons and positrons in straight and periodically bent diamond(110) crystals

    Full text link
    In this paper we present the results of a systematic numerical analysis of the channeling properties of electrons and positrons in oriented straight and periodically bent diamond(110) crystals. We analyse dependence of the intensity of the radiation emitted on the projectile energy as well as on the bending amplitude. The analysis presented is based on the grounds of accurate numerical simulations of the channeling process. The simulation parameters, such as the crystal orientation, thickness and bending parameters of the crystals as well as the energy of the projectiles, were chosen to match those used in past and ongoing experiments. The peculiarities which appear in the radiation spectra are attributed to the interplay of various radiation mechanisms. The analysis performed can be used to predict and explain future experimental results.Comment: 14 pages, 8 figures, 1 tabl

    On a Nonlocal Ostrovsky-Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability

    Get PDF
    Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system is stated and an infinite hierarchy of commuting to each other conservation laws of dispersive type are found. The well defined regularization of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible Poisson structures and a Lax type representation for the special case N=3 are constructed

    Practical monitoring of the clinical efficacy of sinquanon in patients on antibiotic therapy

    Get PDF
    For more than seven decades, antibiotics and chemotherapeutics have been used successfully to treat and prevent infectious diseases, extensively changing the prognosis of severe infections and helping to improve quality of life. In the last two decades, the key role of the intestinal microbiota (IM) in basic vital functions such as digestion, protection against pathogens, and maintenance of immune and metabolic homeostasis has been recognized. Antibiotics do not selectively attack pathogenic bacteria. They have an effect on the normal microflora and can lead to imbalance inside the body (dysbacteriosis) and the development of opportunistic infections. Taking a probiotic during antibiotic treatment is one of the approaches to prevent antibiotic-associated diarrhea and other adverse effects of antibiotics when their use is necessary. In the present practical monitoring we want to share our results from the application of Sinquanon® to neutralize the negative effect of antibiotic treatment on the microbiome

    Cold dark matter and primordial superheavy particles

    Get PDF
    The hypothesis that cold dark matter consists of primordial superheavy particles, the decay of short lifetime component of which led to the observable mass of matter while long living component survived up to modern times manifesting its presence in high energetic cosmic rays particles is investigated.Comment: LaTeX, 5 pages, no figure

    Neural circuitry and immunity

    Get PDF
    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine

    Patoinstitutions and development of the russian economy in terms of its modernization

    Full text link
    In article the patoinstitutsionalizm characteristic as perspective direction of the institutional theory is given, the essence and criteria of allocation patoinstituty through a prism of possibility of use of these concepts are defined in the analysis of factors and features of modernization of the Russian economyВ статье дается характеристика патоинституционализма как перспективного направления институциональной теории, определяются сущность и критерии выделения патоинститутов сквозь призму возможности использования этих понятий при анализе факторов и особенностей модернизации российской экономик

    The role of vibrationally excited nitrogen and oxygen in the ionosphere over Millstone Hill during 16-23 March, 1990

    No full text
    International audienceWe present a comparison of the observed behavior of the F region ionosphere over Millstone Hill during the geomagnetically quiet and storm period on 16-23 March, 1990, with numerical model calculations from the time-dependent mathematical model of the Earth's ionosphere and plasmasphere. The effects of vibrationally excited N2(v) and O2(v) on the electron density and temperature are studied using the N2(v) and O2(v) Boltzmann and non-Boltzmann distribution assumptions. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at vibrational levels v = 1 and 2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The N2(v) and O2(v) non-Boltzmann distribution assumption leads to the decrease of the calculated daytime NmF2 up to a factor of 1.44 (maximum value) in comparison with the N2(v) and O2(v) Boltzmann distribution assumption. The resulting effects of N2(v > 0) and O2(v > 0) on the NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 2.8 (maximum value) for Boltzmann populations of N2(v) and O2(v) and up to a factor of 3.5 (maximum value) for non-Boltzmann populations of N2(v) and O2(v) . This decrease in electron density results in the increase of the calculated daytime electron temperature up to about 1040-1410 K (maximum value) at the F2 peak altitude giving closer agreement between the measured and modeled electron temperatures. Both the daytime and nighttime densities are not reproduced by the model without N2(v > 0) and O2(v > 0) , and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement. The effects of vibrationally excited O2 and N2 on the electron density and temperature are most pronounced during daytime

    Absorption Features in Spectra of Magnetized Neutron Stars

    Full text link
    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50 - 200 eV, whose nature is not yet well known. To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B ~ 10^{14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS\,1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely. We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B ~ 10^{10} - 10^{11} G (i.e., electron cyclotron energy E_{c,e} ~ 0.1 - 1 keV) and T_eff = 1 - 3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs \approx 100 - 200 eV can arise due to these quantum oscillations.Comment: 4 pages, 3 figures, conference "Astrophysics of Neutron Stars - 2010" in honor of M. Ali Alpar, Izmir, Turke
    corecore