125 research outputs found

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems

    Identifying Emotions Using Topographic Conditioning Maps

    Get PDF
    The amygdala is the neural structure that acts as an evaluator of potentially threatening stimuli. We present a biologically plausible model of the visual fear conditioning pathways leading to the amygdala, using a topographic conditioning map (TCM). To evaluate the model, we first use abstract stimuli to understand its ability to form topographic representations, and subsequently to condition on arbitrary stimuli. We then present results on facial emotion recognition using the sub-cortical pathway of the model. Compared to other emotion classification approaches, our model performs well, but does not have the need to pre-specify features. This generic ability to organise visual stimuli is enhanced through conditioning, which also improves classification performance. Our approach demonstrates that a biologically motivated model can be applied to real-world tasks, while allowing us to explore biological hypotheses

    On exact solutions for quintessential (inflationary) cosmological models with exponential potentials

    Full text link
    We first study dark energy models with a minimally-coupled scalar field and exponential potentials, admitting exact solutions for the cosmological equations: actually, it turns out that for this class of potentials the Einstein field equations exhibit alternative Lagrangians, and are completely integrable and separable (i.e. it is possible to integrate the system analytically, at least by quadratures). We analyze such solutions, especially discussing when they are compatible with a late time quintessential expansion of the universe. As a further issue, we discuss how such quintessential scalar fields can be connected to the inflationary phase, building up, for this class of potentials, a quintessential inflationary scenario: actually, it turns out that the transition from inflation toward late-time exponential quintessential tail admits a kination period, which is an indispensable ingredient of this kind of theoretical models. All such considerations have also been done by including radiation into the model.Comment: Revtex4, 10 figure

    Life‐cycle responses of a Mediterranean non‐migratory cyprinid species, the Northern Iberian chub (Squalius carolitertii Doadrio, 1988), to streamflow regulation.

    Get PDF
    Streamflow is considered a driver of interspecific and intraspecific life‐history differences among freshwater fish. Therefore, dams and related flow regulation can have deleterious impacts on their life cycles. The main objective of this study was to assess existing differences in the growth and reproduction patterns of a non‐migratory fish species (the Northern Iberian chub, Squalius carolitertii, Doadrio, 1988), between nonregulated and regulated watercourses. For 1 year, samples were collected from two populations of Iberian chub, inhabiting rivers with nonregulated and regulated flow regimes. Flow regulation for water storage promoted changes in chub's condition, duration of spawning, fecundity, and oocyte size. However, this non‐migratory species was less responsive to streamflow regulation than other native potamodromous species. Findings from this study are important to understand changes imposed by regulated rivers and can be used to support the implementation of suitable river management practices

    On ecological conceptualizations of perceptual systems and action systems

    Get PDF
    This article examines Gibson's concept of perceptual system and Reed's concept of action system. After discussing several assumptions underlying these concepts, the ontological status of these systems is considered. It is argued that perceptual systems and action systems should be conceptualized neither as parts of an animal's body nor as softly (temporarily) assembled devices; rather, they are best understood as animals' abilities to achieve functional relationships, that is, as dispositional properties. This conceptualization entails that these systems are relatively permanent properties of the animal that are causally supported by, though not identical to, anatomical substrates. Further, it entails that it is the animal that perceives and acts, not its perceptual and action systems

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    corecore