653 research outputs found

    Data Base Management for Geographic Information Systems

    Get PDF
    A logical approach to determine the data base 'order of entry' is presented which utilizes management techniques and 'consideration factors'

    Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation

    Full text link
    The hippocampus has the capacity for reactivating recently acquired memories [1-3] and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces [4-11]. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters [12,13].Comment: 16 pages, 5 figure

    A composite biomarker using multiparametric magnetic resonance imaging and blood analytes accurately identifies patients with non-alcoholic steatohepatitis and significant fibrosis

    Get PDF
    Non-alcoholic steatohepatitis (NASH) is major health burden lacking effective pharmacological therapies. Clinical trials enrol patients with histologically-defined NAFLD (non-alcoholic fatty liver disease) activity score (NAS) ≥ 4 and Kleiner-Brunt fibrosis stage (F) ≥ 2; however, screen failure rates are often high following biopsy. This study evaluated a non-invasive MRI biomarker, iron-corrected T1 mapping (cT1), as a diagnostic pre-screening biomarker for NASH. In a retrospective analysis of 86 biopsy confirmed NAFLD patients we explored the potential of blood and imaging biomarkers, both in isolation and in combination, to discriminate those who have NAS ≥ 4 and F ≥ 2 from those without. Stepwise logistic regression was performed to select the optimal combination of biomarkers, diagnostic accuracy was determined using area under the receiver operator curve and model validated confirmed with and fivefold cross-validation. Results showed that levels of cT1, AST, GGT and fasting glucose were all good predictors of NAS ≥ 4 and F ≥ 2, and the model identified the combination of cT1-AST-fasting glucose (cTAG) as far superior to any individual biomarker (AUC 0.90 [0.84–0.97]). This highlights the potential utility of the composite cTAG score for screening patients prior to biopsy to identify those suitable for NASH clinical trial enrolment

    High-voltage-activated Ca2+ currents and the excitability of pyramidal neurons in the hippocampal CA3 subfield in rats depend on corticosterone and time of day

    Get PDF
    This study tested the time-of-day dependence of the intrinsic postsynaptic properties of hippocampal CA3 pyramidal neurons. High-voltage-activated Ca2+ currents and the Ca2+- and voltage-dependent afterhyperpolarizations were examined in slices of rat brains obtained at four distinct time periods. Just after onset of the dark phase, the steady-state amplitude of the Ca2+ current (-1.24 ± 0.11 nA) was significantly greater (P < 0.03) than that of the light phase (-0.84 ± 0.06 nA). Over the entire time range, the amplitude of the Ca2+ current correlated with plasma corticosterone levels in a U-shaped function. Furthermore, depolarization-induced excitability during the dark phase exhibited an increased spike after depolarization (3.1 ± 0.1 mV) and a slower adaptation of the firing frequency (146 ± 18%). These findings point to a dynamic time-of-day dependence of the CA3 neuronal properties and postsynaptic Ca2+ currents.
    • …
    corecore