186 research outputs found

    Experimental and Numerical Investigation of Unforced unsteadiness in a Vaneless Radial Diffuser

    Get PDF
    The paper reports combined experimental and numerical investigations of unforced un- steadiness in a vaneless radial diffuser. Experimental data were obtained within the diffuser using stereoscopic time resolved Particle Image Velocimetry (PIV) recording three velocity components in a plane (2D/3C), coupled with unsteady pressure transducers. To characterize the inception and the evolution of the unsteady phenomena, spectral analyses of the pressure signals were carried out both in frequency and time-frequency domains and the PIV results were post processed by an original averaging method. Two partial flow rates were investigated in detail in this paper. A single unforced unsteadiness was identified for the lowest flow rate, whereas, two competitive intermittent modes were recognized for the higher mass flow. Numerical analyses were carried out on the same pump by the commercial code CFX. All the computations were performed using the unsteady transient model and the turbulence was modelled by the Scale-Adaptive Simulation (SAS) model. Numerical pressure signals were compared with the experimental data to verify the development of the same pressure fluctua- tions

    Analysis of the Unstable Behavior of a Pump-Turbine in Turbine Mode: Fluid-Dynamical and Spectral Characterization of the S-shape Characteristic

    Get PDF
    The most common mechanical equipment adopted in the new generation of pumped-hydro power plants is represented by reversible pump-turbines, required to rapidly switch between pumping and generating modes in order to balance the frequent changes in electricity production and consumption caused by unpredictable renewable energy sources. As a consequence, pump-turbines are required to extend their operation under off-design conditions in unstable operating areas. The paper presents a numerical analysis of the unstable behavior of a pump-turbine operating in turbine mode near the no-load condition. To study in depth the unsteady phenomena which lead to the S-shape of the turbine characteristic, a load rejection scenario at constant and large guide vane opening was numerically analyzed by running through the flow-speed characteristic up to the turbine brake region. The flow field analysis led to the onset and development of unsteady phenomena progressively evolving in an organized rotating stall (65.1% of the runner rotation frequency) during the turbine brake operation. These phenomena were characterized by frequency and time-frequency analyses of several numerical signals (static pressure, blade torque, mass flow rate in blade passages). The influence of the development of these unsteady phenomena on the pump-turbine performance in a turbine operation was also analyzed, and the potential causes that generated the S-Shaped characteristic curve were also investigated

    Comparisons RANS and URANS numerical results with experiments in a vaned diffuser of a centrifugal pump

    Get PDF
    the paper presents the analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV (particles image velocimetry) technique, pressure probe traverses and numerical simula\u2011 tions. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given rotational speed and various flow rates. For each operating condition, PIV measurements have been made for differ\u2011 ent angular positions of the impeller. Probe traverses have also been performed using a 3 holes pressure probe from hub to shroud diffuser width at different radial locations in between the two diffuser geometrical throats. the numerical simulations were realized with the two commercial codes: i\u2011Star CCM+ 8.02.011 (rAnS (reynolds Averaged navier Stokes) turbu\u2011 lence model, frozen rotor and unsteady calculations), ii\u2011CFX 10.0 (turbulence modelled with DeS model (Detached eddy Simulation) combining rAnS with leS (large eddy Simulation), unsteady calculations). Comparisons between numerical (fully unsteady calculations) and experimental results are presented and discussed for two flow rates. In this respect, the effects of fluid leakage due to the gap between the rotating and fixed part of the pump model are analysed and discussed

    High-speed stereoscopic PIV study of rotating instabilities in a radial vaneless diffuser

    Get PDF
    This paper presents an experimental analysis of the unsteady phenomena developing in a vaneless diffuser of a radial flow pump. Partial flow operating conditions were investigated using 2D/3C high repetition rate PIV, coupled with unsteady pressure transducers. Pressure measurements were acquired on the shroud wall of the vaneless diffuser and on the suction pipe of the pump, whereas PIV flow fields were determined on three different heights in the hub to shroud direction, inside the diffuser. The classical Fourier analysis was applied to both pressure signals to identify the spectral characteristics of the developing instabilities, and the high-order spectral analysis was exploited to investigate possible non-linear interaction mechanisms between different unsteady structures. A dedicated PIV averaging procedure was developed and applied to the PIV flow fields so as to capture and visualize the topology of the spectrally identified phenomena. The influence of these phenomena on the diffuser efficiency was also investigated.CISIT - Region Nord pas de calai

    Experimental and Numerical Investigation of Unforced unsteadiness in a Vaneless Radial Diffuser

    Get PDF
    The paper reports combined experimental and numerical investigations of unforced un- steadiness in a vaneless radial diffuser. Experimental data were obtained within the diffuser using stereoscopic time resolved Particle Image Velocimetry (PIV) recording three velocity components in a plane (2D/3C), coupled with unsteady pressure transducers. To characterize the inception and the evolution of the unsteady phenomena, spectral analyses of the pressure signals were carried out both in frequency and time-frequency domains and the PIV results were post processed by an original averaging method. Two partial flow rates were investigated in detail in this paper. A single unforced unsteadiness was identified for the lowest flow rate, whereas, two competitive intermittent modes were recognized for the higher mass flow. Numerical analyses were carried out on the same pump by the commercial code CFX. All the computations were performed using the unsteady transient model and the turbulence was modelled by the Scale-Adaptive Simulation (SAS) model. Numerical pressure signals were compared with the experimental data to verify the development of the same pressure fluctua- tions

    Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    Get PDF
    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon

    Simulation model of a variable-speed pumped-storage power plant in unstable operating conditions in pumping mode

    Get PDF
    This paper presents a dynamic simulation model of a laboratory-scale pumped-storage power plant (PSPP) operating in pumping mode with variable speed. The model considers the dynamic behavior of the conduits by means of an elastic water column approach, and synthetically generates both pressure and torque pulsations that reproduce the operation of the hydraulic machine in its instability region. The pressure and torque pulsations are generated each from a different set of sinusoidal functions. These functions were calibrated from the results of a CFD model, which was in turn validated from experimental data. Simulation model results match the numerical results of the CFD model with reasonable accuracy. The pump-turbine model (the functions used to generate pressure and torque pulsations inclusive) was up-scaled by hydraulic similarity according to the design parameters of a real PSPP and included in a dynamic simulation model of the said PSPP. Preliminary conclusions on the impact of unstable operation conditions on the penstock fatigue were obtained by means of a Monte Carlo simulation-based fatigue analysis

    High-speed stereoscopic PIV study of rotating instabilities in a radial vaneless diffuser

    Get PDF
    This paper presents an experimental analysis of the unsteady phenomena developing in a vaneless diffuser of a radial flow pump. Partial flow operating conditions were investigated using 2D/3C high repetition rate PIV, coupled with unsteady pressure transducers. Pressure measurements were acquired on the shroud wall of the vaneless diffuser and on the suction pipe of the pump, whereas PIV flow fields were determined on three different heights in the hub to shroud direction, inside the diffuser. The classical Fourier analysis was applied to both pressure signals to identify the spectral characteristics of the developing instabilities, and the high-order spectral analysis was exploited to investigate possible non-linear interaction mechanisms between different unsteady structures. A dedicated PIV averaging procedure was developed and applied to the PIV flow fields so as to capture and visualize the topology of the spectrally identified phenomena. The influence of these phenomena on the diffuser efficiency was also investigated.CISIT - Region Nord pas de calai
    • …
    corecore