47 research outputs found

    Core-shell magnetoactive PHB/gelatin/magnetite composite electrospun scaffolds for biomedical applications

    Get PDF
    Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio–0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168–169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications

    Structural Aspects of Electrospun Scaffolds Intended for Prosthetics of Blood Vessels

    No full text
    Electrospinning is a popular method used to fabricate small-diameter vascular grafts. However, the importance of structural characteristics of the scaffold determining interaction with endothelial cells and their precursors and blood cells is still not exhaustively clear. This review discusses current research on the significance and impact of scaffold architecture (fiber characteristics, porosity, and surface roughness of material) on interactions between cells and blood with the material. In addition, data about the effects of scaffold topography on cellular behaviour (adhesion, proliferation, and migration) are necessary to improve the rational design of electrospun vascular grafts with a long-term perspective

    Isolation of Extracellular Vesicles: General Methodologies and Latest Trends

    No full text
    Background. Extracellular vesicles (EVs) play an essential role in the communication between cells and transport of diagnostically significant molecules. A wide diversity of approaches utilizing different biochemical properties of EVs and a lack of accepted protocols make data interpretation very challenging. Scope of Review. This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method. Various characteristics of individual methods, including isolation efficiency, EV yield, properties of isolated EVs, and labor consumption are compared. Major Conclusions. A mixed population of vesicles is obtained in most studies of EVs for all used isolation methods. The properties of an analyzed sample should be taken into account when planning an experiment aimed at studying and using these vesicles. The problem of adequate EVs isolation methods still remains; it might not be possible to develop a universal EV isolation method but the available protocols can be used towards solving particular types of problems. General Significance. With the wide use of EVs for diagnosis and therapy of various diseases the evaluation of existing methods for EV isolation is one of the key problems in modern biology and medicine

    General Study and Gene Expression Profiling of Endotheliocytes Cultivated on Electrospun Materials

    No full text
    Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2’-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization

    Activated Carbon-Enriched Electrospun-Produced Scaffolds for Drug Delivery/Release in Biological Systems

    No full text
    To vectorize drug delivery from electrospun-produced scaffolds, we introduce a thin outer drug retention layer produced by electrospinning from activated carbon nanoparticles (ACNs)-enriched polycaprolacton (PCL) suspension. Homogeneous or coaxial fibers filled with ACNs were produced by electrospinning from different PCL-based suspensions. Stable ACN suspensions were selected by sorting through solvents, stabilizers and auxiliary components. The ACN-enriched scaffolds produced were characterized for fiber diameter, porosity, pore size and mechanical properties. The scaffold structure was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that ACNs were mainly coated with a polymer layer for both homogeneous and coaxial fibers. Drug binding and release from the scaffolds were tested using tritium-labeled sirolimus. We showed that the kinetics of sirolimus binding/release by ACN-enriched scaffolds was determined by the fiber composition and differed from that obtained with a free ACN. ACN-enriched scaffolds with coaxial and homogeneous fibers had a biocompatibility close to scaffold-free AC, as was shown by the cultivation of human gingival fibroblasts and umbilical vein cells on scaffolds. The data obtained demonstrated that ACN-enriched scaffolds had good physico-chemical properties and biocompatibility and, thus, could be used as a retaining layer for vectored drug delivery

    Isolation, culturing and gene expression profiling of inner mass cells from stable and vulnerable carotid atherosclerotic plaques.

    No full text
    The connective tissue components that form the atherosclerotic plaque body are produced by the plaque inner mass cells (PIMC), located inside the plaque. We report an approach to isolate and culture cells from the connective tissue of stable and vulnerable human atherosclerotic plaques based on elimination of non-connective tissue cells such as blood and non-plaque intima cells with a lysis buffer. The resulting plaque cells were characterized by growth capacity, morphology, transcriptome profiling and specific protein expression. Plaque cells slowly proliferated for up to three passages unaffected by the use of proliferation stimulants or changes of culture media composition. Stable plaques yielded more cells than vulnerable ones. Plaque cell cultures also contained several morphological cellular types. RNA-seq profiles of plaque cells were different from any of the cell types known to be involved in atherogenesis. The expression of the following proteins was observed in cultured plaque cells: smooth muscle cells marker α-SMA, macrophage marker CD14, extracellular matrix proteins aggrecan, fibronectin, neovascularisation markers VEGF-A, CD105, cellular adhesion receptor CD31 and progenitor/dedifferentiation receptor CD34. Differential expression of several notable transcripts in cells from stable and vulnerable plaques suggests the value of plaque cell culture studies for the search of plaque vulnerability markers
    corecore