4 research outputs found

    Author Correction: A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis (Nature Communications, (2023), 14, 1, (4816), 10.1038/s41467-023-40541-1)

    Get PDF
    \ua9 The Author(s) 2024.The original version of this Article contained errors in Figs. 2, 3, and 5. In the original Fig. 2e, the flow cytometry panel on the right (labelled “StD (24 hr) followed by 1% O2 (~16 hr)”), was inadvertently duplicated from the panel on the left (labelled “Concurrent StD and 1% O2 (~24 hr)”). In the original Fig. 3a, the flow cytometry panel on the right (labelled “Roxadustat”), was inadvertently duplicated from the panel on the left (labelled “DMOG”). In the original Fig. 5c, the labels did not properly communicate that both panels come from the same experiment and have the same controls. The following sentence has been added to the end of the legend for Fig. 5c: “The data depicted in the left and right panels originated from the same experiment and as such the control plots are the same in both.” Figures 2, 3, and 5 have been corrected in both the PDF and HTML versions of the Article. The original version of the Supplementary Information associated with this Article contained an error in Supplementary Fig. 5. In the original Supplementary Fig. 5a, the labels did not properly communicate that all three panels come from the same experiment and have the same control. The following sentence has been added to the end of the legend for Supplementary Fig. 5a: “The data depicted in the three panels originated from the same experiment and as such the control plot is the same in all panels”. The HTML has been updated to include a corrected version of the Supplementary Information

    Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1

    Get PDF
    CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action
    corecore